A survey of computational models for wind speed forecasting from 2004 to 2016
DOI:
https://doi.org/10.36825/RITI.08.15.004Keywords:
Computational Models, Forecasting Models, Wind Speed, Literature ReviewAbstract
Wind speed forecast is a topic broadly researched in the present day. Its importance in the design and calculations of structures for considerably sized buildings to be built in high risk hurricane zones is a key factor to consider. Another branch off this line of research includes its utility in Eolic energy prediction, which is not a subject to discuss in this article. Here a classification of computational models for wind speed forecasting is presented according to the mathematic technique used for forecasting and based on literature review. The techniques used to classify are: multivariate lineal regression, artificial neural networks, time series, fuzzy logic, and the Gaussian process. Throughout the development of this research, artificial neural networks and fuzzy logic applications were identified as future lines of research both combined with efficient data mining work.
References
Gott, E. (1969). Linear Regression of Interlevel Wind Velocities. IEEE Transactions on Geoscience Electronics, 7 (1), 44-47. doi: https://doi.org/10.1109/TGE.1969.271346
British Electrical and Allied Industries Research Association. (1935). Wind Pressure on Latticed Towers—Tests on Models. IEEE Journal of the Institution of Electrical Engineers, 77 (464), 189-196. doi: https://doi.org/10.1049/jiee-1.1935.0139
El-Fouly, T. H., El-Saadany, E. F. (2012). Grey Predictors for Hourly Wind Speed and Power Forecasting. In: S. Muyeen (Ed.), Wind Energy Conversion Systems, Green Energy Technology. London: Springer. doi: https://doi.org/10.1007/978-1-4471-2201-2_9
Damousis, I. G., Alexiadis, M. C., Theocharis, J. B., Dokopoulos, P. S. (2004). A Fuzzy Model for Wind Speed Prediction and Power Generation in Wind Parks Using Spatial Correlation. IEEE Transactions on Energy Conversion, 19 (2), 352-361. doi: https://doi.org/10.1109/TEC.2003.821865
Arjun, N. N., Prema, V., Kumar, D. K., Prashanth, P., Preekshit, V. S., Rao, K. R. (2014). Multivariate Regression models for prediction of wind speed. Presentado en International Conference on Data Science & Engineering (ICDSE), Kochi, India. doi: https://doi.org/10.1109/ICDSE.2014.6974632
Cadenas, E., Rivera, W., Campos-Amezcua, R., Cadenas, R. (2015). Wind speed forecasting using the NARX model, case: La Mata, Oaxaca, México. Neural Computing and Applications, 27 (8), 2417-2428. doi: https://doi.org/10.1007/s00521-015-2012-y
Yesilbudak, M., Sagiroglu, S., Colak, I. (2013). A new approach to very short term wind speed prediction using k-nearest neighbor classification. Energy Conversion and Management, 69, 77–86. https://doi.org/10.1016/j.enconman.2013.01.033
Yu, J., Chen, K., Mori, J., Rashid, M. M. (2013). A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction. Energy, 61, 673-686. doi: https://doi.org/10.1016/j.energy.2013.09.013
Wang, J., Zhang, W., Wang, J., Han, T., Kong, L. (2014). A novel hybrid approach for wind speed prediction. Information Sciences, 273, pp. 304–318. doi: https://doi.org/10.1016/j.ins.2014.02.159
Wang, Y., Su, Z. (2015). A Prediction Method for Wind Speed Based on the Correlation Analysis of Measured Data of Adjacent Wind Turbine. En Z. Deng, H. Li (Eds.), Proceedings of the 2015 Chinese Intelligent Automation Conference. Lecture Notes in Electrical Engineering (pp 87-95). Berlin: Springer. doi: https://doi.org/10.1007/978-3-662-46469-4_9
Wang, J., Hu, J. (2015). A robust combination approach for short-term wind speed forecasting and analysis e Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model. Energy, 93 (1), 41-56. doi: https://doi.org/10.1016/j.energy.2015.08.045
Wu, X., Zhu, Z., Su, X., Fan, S., Du, Z., Chang, Y., Zeng, Q. (2015). A study of single multiplicative neuron model with nonlinear filters for hourly wind speed prediction. Energy, 88, 194-201. doi: https://doi.org/10.1016/j.energy.2015.04.075
Ak, R., Vitelli, V., Zio, E. (2015). An Interval-Valued Neural Network Approach for Uncertainty Quantification in Short-Term Wind Speed Prediction. IEEE Transactions on Neural Networks and Learning Systems, 26 (11), 2787-2800. doi: https://doi.org/10.1109/TNNLS.2015.2396933
Bilgili, M., Sahin, B. (2010). Comparative analysis of regression and artificial neural network models for wind speed prediction. Meteorology and Atmospheric Physics, 109 (1-2), 61-72. doi: https://doi.org/10.1007/s00703-010-0093-9
Zhang, G., Li, H. X., Gan, M. (2012). Design a Wind Speed Prediction Model Using Probabilistic Fuzzy System. IEEE Transactions on Industrial Informatics, 8 (4), 819-827. doi: https://doi.org/10.1109/TII.2012.2205392
Lee, J., Park, G. L., Kim, E. H. (2012). Development of Wind Speed Prediction Model in Jeju City. En T. Kim, C. Ramos, J. Abawajy, B. H. Kang, D. Ślęzak, H. Adeli (Eds.), Computer Applications for Modeling, Simulation, and Automobile, 341, (pp. 20–26), Berlin, Heidelberg: Springer. doi: https://doi.org/10.1007/978-3-642-35248-5_4
Hervás-Martínez, C., Salcedo-Sanz, S., Gutiérrez, P. A., Ortiz-García, E. G., Prieto, L. (2012). Evolutionary product unit neural networks for short-term wind speed forecasting in wind farms. Neural Computing and Applications, 21 (5), 993-1005. doi: https://doi.org/10.1007/s00521-011-0582-x
Lujano-Rojas, J. M., Bernal-Agustín, J. L., Dufo-López, R., Domínguez-Navarro, J. A. (2011). Forecast of Hourly Average Wind Speed Using ARMA Model with Discrete Probability Transformation. Electrical Engineering and Control, 98, 1003-1010. doi: https://doi.org/10.1007/978-3-642-21765-4_125
Kiplangat, D. C., Asokan, K., Kumar, K. S. (2016). Improved week-ahead predictions of wind speed using simple linear models with wavelet decomposition. Renewable Energy, 93, 38-44. doi: https://doi.org/10.1016/j.renene.2016.02.054
Lydia, M., Suresh Kumar, S., Immanuel Selvakumara, A., Edwin Prem Kumarc, G. (2016). Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Conversion and Management, 112, 115-124. doi: https://doi.org/10.1016/j.enconman.2016.01.007
Barbounis, T. G., Theocharis, J. B. (2007). Locally recurrent neural networks for wind speed prediction using spatial correlation. Information Sciences, 177 (24), 5775-5797. doi: https://doi.org/10.1016/j.ins.2007.05.024
Cardenas-Barrera, J. L., Castillo-Guerra, E., Meng, J., Chang, L. (2013). Multi-step-ahead, Short-Term Prediction of Wind Speed Using a Fusion Approach. En J. Ruiz-Shulcloper, G. Sanniti di Baja (Eds.), Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2013. Lecture Notes in Computer Science (pp. 83-91). Berlin: Springer. doi: https://doi.org/10.1007/978-3-642-41827-3_11
Gnana Sheela, K., Deepa, S. N. (2013). Neural network based hybrid computing model for wind speed prediction. Neurocomputing, 122, 425-429. doi: https://doi.org/10.1016/j.neucom.2013.06.008
El-Fouly, T. H., El-Saadany, E., Salama, M. A. (2008). One Day Ahead Prediction of Wind Speed and Direction. IEEE Transactions on Energy Conversion, 23 (1), 191-201. doi: https://doi.org/10.1109/TEC.2007.905069
Gnana Sheela, K., Deepa, S. N. (2013). Performance Analysis of Modeling Framework for Prediction in Wind Farms Employing Artificial Neural Networks. Soft Computing, 18 (3), 607-615. doi: https://doi.org/10.1007/s00500-013-1084-9
Heinermann, J., Kramer, O. (2015). Short-Term Wind Power Prediction with Combination of Speed and Power Time Series. En S. Hölldobler, R. Peñaloza, S. Rudolph (Eds.), KI 2015: Advances in Artificial Intelligence. Lecture Notes in Computer Science (pp. 100-110). Cham: Springer. doi: https://doi.org/10.1007/978-3-319-24489-1_8
Kusiak, A., Zhang, Z. (2010). Short-Horizon Prediction of Wind Power: A Data-Driven Approach. IEEE Transaction on Energy Conversion, 25 (4), 1112-1122. doi: https://doi.org/10.1109/TEC.2010.2043436
Doucoure, B., Agbossou, K., Cardenas, A. (2011). Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data. Renewable Energy, 92, 202-211. doi: https://doi.org/10.1016/j.renene.2016.02.003
Kulkarni, M., Patil, S., Rama, G. V., Sen, P. N. (2008). Wind speed prediction using statistical regression and neural network. Journal of Earth System Science, 117 (4), 457-463. doi: https://doi.org/10.1007/s12040-008-0045-7
Hu, Q., Zhang, R., Zhou, Y. (2015). Transfer learning for short-term wind speed prediction with deep neural networks. Renewable Energy, 85, 83-95. doi: https://doi.org/10.1016/j.renene.2015.06.034
Ghorbani, M. A., Khatibi, R., Hosseini, B., Bilgili, M. (2013). Relative importance of parameters affecting wind speed prediction using artificial neural networks. Theoretical and Applied Climatology, 114, 107-114. doi: https://doi.org/10.1007/s00704-012-0821-9
Deligiorgi, D., Philippopoulos, K., Kouroupetroglou, G. (2013). Artificial Neural Network Based Methodologies for the Estimation of Wind Speed. En F. Cavallaro (Eds.), Assessment and Simulation Tools for Sustainable Energy Systems. Green Energy and Technology (pp. 247-266). London: Springer.
Ernst, B., Oakleaf, B., Ahlstrom, M. L., Lange, M., Moehrlen, C., Lange, B., Focken, U., Rohrig, K. (2007). Predicting the Wind. IEEE Power and Energy Magazine, 5 (6), 78-89. doi: https://doi.org/10.1109/MPE.2007.906306
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista de Investigación en Tecnologías de la Información
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Esta revista proporciona un acceso abierto a su contenido, basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global del conocimiento.
El texto publicado en la Revista de Investigación en Tecnologías de la Información (RITI) se distribuye bajo la licencia Creative Commons (CC BY-NC), que permite a terceros utilizar lo publicado citando a los autores del trabajo y a RITI, pero sin hacer uso del material con propósitos comerciales.