Literature review on feed bunk management in beef cattle feedlots

Authors

DOI:

https://doi.org/10.36825/RITI.12.28.005

Keywords:

Precision Livestock Farming, Feed Bunk Management, Artificial Intelligence

Abstract

The current conditions of livestock in northern Sinaloa for beef cattle are carried out using traditional methods, and only 11.5% practice it in feedlots. Fattening in pens allows controlled feeding and efficient feed conversion; however, every day, a person reads the feed bunks by observing the amount of residual feed to determine if an adjustment is necessary. Due to inconsistencies in classification, this can result in excessive feed variation and cause economic losses from waste or diseases caused by the decomposition of accumulated feed. Precision livestock farming is the application of information technology in livestock, making it important to conduct a literature review and evaluate technological advances in livestock farming and consider how they can be applied to feed bunk management.

References

Consejo Mexicano de la Carne. (2023). Compendio Estadístico 2023. https://comecarne.org/

INEGI. (2023). Censo agropecuario 2022. https://www.inegi.org.mx/programas/ca/2022/

Ceconi, I., Ferreyra, S., Méndez, D., Davies, P. (2018). Día Ganado 2018 - General Villegas, Argentina Terminación a corral: lectura de comederos y su impacto sobre resultados productivos. [Video]. YouTube. https://youtu.be/NWNyElOiLKM

Dorea, J. R. R., Cheong, S. (2019). PSXI-2 A computer vision system for feed bunk management in beef cattle feedlot. Journal of Animal Science, 97 (Suppl 3), 389–390. https://doi.org/10.1093%2Fjas%2Fskz258.776

Desdémona Martínez, E. (2023). Implicaciones que influyen en el desempeño productivo, características de la canal y de la carne de ganado bovino engordado en corral. Revista de Investigaciones Veterinarias del Perú, 34 (3). http://dx.doi.org/10.15381/rivep.v34i3.24517

González, L. A., Tolkamp, B. J., Coffey, M. P., Ferret, A., Kyriazakis, I. (2008). Changes in feeding behavior as possible indicators for the automatic monitoring of health disorders in dairy cows. Journal of Dairy Science, 91 (3), 1017–1028. https://doi.org/10.3168/jds.2007-0530

Moreno, F., Ramírez, E. (2017). Algoritmos de Visión por Computador para un SBC. https://www.researchgate.net/publication/320107559

Hernández Sampieri, R., Fernández Collado, C., Baptista Lucio, P. (2014). Metodología de la Investigación (6ta. Ed.). Mc Graw Hill.

Islam, M. N., Yoder, J., Nasiri, A., Burns, R. T., Gan, H. (2023). Analysis of the Drinking Behavior of Beef Cattle Using Computer Vision. Animals, 13 (18), 1-10. https://doi.org/10.3390/ani13182984

Marques de Paula, B., Rezende da Silva, G., Ferreira, S. E., Coimbra Maia, B. L., Gomes Almeida, M. E., Soares Júnior, V. M., da Silva Maciel, L. M., Chaves, A. S. (2023). Dataset of feed bunk score images of cattle feedlot. Data Brief, 47, 1-6. https://doi.org/10.1016/j.dib.2023.108996

Shangru, L., Chengrui, Z., Ruixue, W., Jiamei, S., Hangshu, X., Yonggen, Z., Yukun, S. (2022). Establishment of a feed intake prediction model based on eating time, ruminating time and dietary composition. Computers and Electronics in Agriculture, 202. https://doi.org/10.1016/j.compag.2022.107296

Sokullu, R., Tanriverdi,B. Y., Goleva, R. (2022). Iot Based Livestock Precision Feeding System Using Machine Learning. 8th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE). Ruse, Bulgaria. https://doi.org/10.1109/EEAE53789.2022.9831244

Tiwari, A., Sachdeva, K., Jain, N. (2021). Computer Vision and Deep Learning-based Framework for Cattle Monitoring. IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). Dehradun, India. https://doi.org/10.1109/UPCON52273.2021.9667617

Bezen, R., Edan, Y., Halachmi, I. (2020). Computer vision system for measuring individual cow feed intake using RGB-D camera and deep learning algorithms. Computers and Electronics in Agriculture, 172. https://doi.org/10.1016/j.compag.2020.105345

Hu, B., Tian, Q., Chen, A., Xiong, G., Wang, X., Wang, Q. (2014). Intelligent Farming Control System based on Computer Vision. IEEE International Conference on Service Operations and Logistics, and Informatics. Qingdao, China. https://doi.org/10.1109/SOLI.2014.6960720

Published

2024-11-25

How to Cite

Luna Bojórquez, J. L., Ramírez-Noriega , A., & Martínez Ramírez, Y. (2024). Literature review on feed bunk management in beef cattle feedlots. Revista De Investigación En Tecnologías De La Información, 12(28 Especial), 45–53. https://doi.org/10.36825/RITI.12.28.005

Most read articles by the same author(s)