Diagnosis of infertility using deep learning techniques: a promising approach in reproductive medicine

Authors

  • Guillermo Eduardo Reyes Rodríguez Universidad del Istmo, campus Tehuantepec, Santo Domingo Tehuantepec Oaxaca
  • José Ricardo Salvador Nolasco Universidad del Istmo, campus Tehuantepec, Santo Domingo Tehuantepec Oaxaca
  • Mario Andrés Basilio López Universidad del Istmo, campus Tehuantepec, Santo Domingo Tehuantepec Oaxaca
  • Sergio Juárez Vázquez Universidad del Istmo, campus Tehuantepec, Santo Domingo Tehuantepec Oaxaca https://orcid.org/0000-0002-2080-4861

DOI:

https://doi.org/10.36825/RITI.11.23.006

Keywords:

Infertility, Decision Trees, Data Analysis, Data Mining, Confusion Matrix

Abstract

The decrease in the worldwide fertility rate is a concern due to the potential risk of an aging population and demographic imbalances. Male infertility is a matter of interest to public health officials and researchers, as there has been a decrease in sperm count and motility caused by lifestyle habits, diseases, and accidents. The identification of risk factors in male infertility is not common in medicine, however, researchers are developing artificial intelligence techniques to identify these risk factors. This article focuses on data analysis through data mining, using the Fertility database, which contains information from 100 volunteers. The technique chosen for data analysis was decision trees, implemented in MATLAB. The original database had 9 attributes and was reduced to 5 for the classification model. During the second stage, cross-training and evaluation produced a model accuracy of 83.3% and a training time of 1.8774 seconds. In the last stage, a test with 10% of the samples obtained 80% accuracy. The model produced a True Positive Rate of 94.9% for class N and a False Negative Rate of 100% for class O.

References

Mundial BIRF AIF. (2020). Tasa de fertilidad, total (nacimientos por cada mujer). DataBank. https://datos.bancomundial.org/indicator/SP.DYN.TFRT.IN

World Health Organization. (2020). Infertility. https://www.who.int/news-room/fact-sheets/detail/infertility

Criado, M. A. (2022). La calidad del esperma de los humanos ha bajado a la mitad en el último medio siglo. El País. https://elpais.com/ciencia/2022-11-15/la-calidad-del-esperma-de-los-humanos-ha-bajado-a-la-mitad-en-el-ultimo-medio-siglo.html

Castrillón, O. D., Arango, J. A., Castillo, L. F. (2022). Análisis de la fertilidad por medio de técnicas de minería datos. Información tecnológica, 33 (3), 203-212. https://dx.doi.org/10.4067/S0718-07642022000300203

Velilla-Hernández, E., Velilla-Hernández, P. A, Cardona-Maya, W. (2013). Aproximación al desempeño operativo de un modelo de redes neuronales en el diagnóstico de la infertilidad masculina. Revista Colombiana de Obstetricia y Ginecología, 64 (3), 222-228. https://doi.org/10.18597/rcog.103

Causa-Andrieu, P., Couture, J. M., Benítez-Mendes, A. C., Napoli, N., Chacón, C. R. B., Ulla, M. (2017). Infertilidad en la mujer: importancia del análisis combinado de los métodos por imágenes. Reporte de casos. Ginecología y obstetricia de México, 85 (12), 846-852. https://doi.org/10.24245/gom.v85i12.1442

Mendoza, F., De la Hoz Manotas, A., Ariza, P. Sepulveda Ojeda, J. Melo, M. (2016). Fertility Analysis Method Based on Supervised and Unsupervised Data Mining Techniques. International Journal of Applied Engineering, 11 (21), 10374-10379.

Milewska, A., Jankowska, D., Cwalina, U., Citko, D., Więsak, T., Acacio,B., Milewski, R.(2017).Prediction of Infertility Treatment Outcomes Using Classification Trees. Studies in Logic, Grammar and Rhetoric, 47 (1), 7-19. https://doi.org/10.1515/slgr-2016-0043

Solarte Martínez, G. R., Soto Mejía, J. A. (2011). Arboles de decisiones en el diagnóstico de enfermedades cardiovasculares. Scientia Et Technica, 16 (49), 104-109.

Pérez López, C., Santin González, D. (2007). Minería de datos. Técnicas y herramientas: técnicas y herramientas. Ediciones Paraninfo, S. A.

Gil, D., Girela, J. L., De Juan, J., Gomez-Torres, J. J., Johnsson, M. (2012). Predicting seminal quality with artificial intelligence methods. Expert Systems with Applications, 39 (16), 12564-12573. https://doi.org/10.1016/j.eswa.2012.05.028

del Castillo Collazo, N. (2020). Incidencia en el pronóstico al aplicar reducción de variables. Un ejemplo práctico. Revista de Investigación en Tecnologías de la Información (RITI), 8 (15), 50–69. https://doi.org/10.36825/RITI.08.15.006

Corrales Gasca, P. J., Razo Granados, J. A., Violante Hernández, M. Á., Rodríguez Hernández, I. J., Ramírez Soto, R. (2015). Métodos de clasificación: Análisis de fertilidad. Pistas Educativas, 35 (111), 43-57.

Hernández Figueroa, L. J., Serna Manríquez, A., Gómez Melesio, J. A., Hurtado Mendoza, J. G., Ramírez Pérez, N. V. (2015). Análisis de métodos de clasificación para el diagnóstico de fertilidad. Pistas Educativas, 36 (114), 243-259. https://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/view/301

MathWorks. (2021). MATLAB. https://www.mathworks.com/products/matlab.html

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1 (1), 81-106. https://doi.org/10.1007/BF00116251

Lewis, R. J. (2000). An Introduction to Classification and Regression Tree (CART) Analysis. Annual Meeting of the Society for Academic Emergency Medicine. San Francisco, California.

Chollet,F. (2018). Deep learning with Python. Manning Publications.

Powers, D. M. W. (2011). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. Journal of Machine Learning Technologies, 2 (1), 37-63. https://doi.org/10.48550/arXiv.2010.16061

Published

2023-05-03

How to Cite

Reyes Rodríguez, G. E., Salvador Nolasco, J. R., Basilio López, M. A., & Juárez Vázquez, S. (2023). Diagnosis of infertility using deep learning techniques: a promising approach in reproductive medicine. Revista De Investigación En Tecnologías De La Información, 11(23), 59–69. https://doi.org/10.36825/RITI.11.23.006

Issue

Section

Artículos

Most read articles by the same author(s)