Revisión de literatura de modelos computacionales para la predicción de la velocidad del viento de 2004 a 2016
DOI:
https://doi.org/10.36825/RITI.08.15.004Palabras clave:
Modelos Computacionales, Modelos de Pronóstico, Velocidad del Viento, Revisión de LiteraturaResumen
El pronóstico de la velocidad del viento es un tema ampliamente investigado en la actualidad. Un factor clave a tener en cuenta es su importancia en el diseño y el cálculo de estructuras para edificios de tamaño considerable que se construirán en zonas de huracanes de alto riesgo. Otra rama de esta línea de investigación incluye su utilidad en la predicción de energía eólica, que no es un tema para discutir en este artículo. Aquí se presenta una clasificación de modelos computacionales para el pronóstico de la velocidad del viento de acuerdo con la técnica matemática utilizada para el pronóstico y basada en la revisión de la literatura. Las técnicas utilizadas para clasificar son: regresión lineal multivariante, redes neuronales artificiales, series de tiempo, lógica difusa y el proceso gaussiano. A lo largo del desarrollo de esta investigación, las redes neuronales artificiales y las aplicaciones de lógica difusa se identificaron como futuras líneas de investigación combinadas con un trabajo eficiente de minería de datos.
Citas
Gott, E. (1969). Linear Regression of Interlevel Wind Velocities. IEEE Transactions on Geoscience Electronics, 7 (1), 44-47. doi: https://doi.org/10.1109/TGE.1969.271346
British Electrical and Allied Industries Research Association. (1935). Wind Pressure on Latticed Towers—Tests on Models. IEEE Journal of the Institution of Electrical Engineers, 77 (464), 189-196. doi: https://doi.org/10.1049/jiee-1.1935.0139
El-Fouly, T. H., El-Saadany, E. F. (2012). Grey Predictors for Hourly Wind Speed and Power Forecasting. In: S. Muyeen (Ed.), Wind Energy Conversion Systems, Green Energy Technology. London: Springer. doi: https://doi.org/10.1007/978-1-4471-2201-2_9
Damousis, I. G., Alexiadis, M. C., Theocharis, J. B., Dokopoulos, P. S. (2004). A Fuzzy Model for Wind Speed Prediction and Power Generation in Wind Parks Using Spatial Correlation. IEEE Transactions on Energy Conversion, 19 (2), 352-361. doi: https://doi.org/10.1109/TEC.2003.821865
Arjun, N. N., Prema, V., Kumar, D. K., Prashanth, P., Preekshit, V. S., Rao, K. R. (2014). Multivariate Regression models for prediction of wind speed. Presentado en International Conference on Data Science & Engineering (ICDSE), Kochi, India. doi: https://doi.org/10.1109/ICDSE.2014.6974632
Cadenas, E., Rivera, W., Campos-Amezcua, R., Cadenas, R. (2015). Wind speed forecasting using the NARX model, case: La Mata, Oaxaca, México. Neural Computing and Applications, 27 (8), 2417-2428. doi: https://doi.org/10.1007/s00521-015-2012-y
Yesilbudak, M., Sagiroglu, S., Colak, I. (2013). A new approach to very short term wind speed prediction using k-nearest neighbor classification. Energy Conversion and Management, 69, 77–86. https://doi.org/10.1016/j.enconman.2013.01.033
Yu, J., Chen, K., Mori, J., Rashid, M. M. (2013). A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction. Energy, 61, 673-686. doi: https://doi.org/10.1016/j.energy.2013.09.013
Wang, J., Zhang, W., Wang, J., Han, T., Kong, L. (2014). A novel hybrid approach for wind speed prediction. Information Sciences, 273, pp. 304–318. doi: https://doi.org/10.1016/j.ins.2014.02.159
Wang, Y., Su, Z. (2015). A Prediction Method for Wind Speed Based on the Correlation Analysis of Measured Data of Adjacent Wind Turbine. En Z. Deng, H. Li (Eds.), Proceedings of the 2015 Chinese Intelligent Automation Conference. Lecture Notes in Electrical Engineering (pp 87-95). Berlin: Springer. doi: https://doi.org/10.1007/978-3-662-46469-4_9
Wang, J., Hu, J. (2015). A robust combination approach for short-term wind speed forecasting and analysis e Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model. Energy, 93 (1), 41-56. doi: https://doi.org/10.1016/j.energy.2015.08.045
Wu, X., Zhu, Z., Su, X., Fan, S., Du, Z., Chang, Y., Zeng, Q. (2015). A study of single multiplicative neuron model with nonlinear filters for hourly wind speed prediction. Energy, 88, 194-201. doi: https://doi.org/10.1016/j.energy.2015.04.075
Ak, R., Vitelli, V., Zio, E. (2015). An Interval-Valued Neural Network Approach for Uncertainty Quantification in Short-Term Wind Speed Prediction. IEEE Transactions on Neural Networks and Learning Systems, 26 (11), 2787-2800. doi: https://doi.org/10.1109/TNNLS.2015.2396933
Bilgili, M., Sahin, B. (2010). Comparative analysis of regression and artificial neural network models for wind speed prediction. Meteorology and Atmospheric Physics, 109 (1-2), 61-72. doi: https://doi.org/10.1007/s00703-010-0093-9
Zhang, G., Li, H. X., Gan, M. (2012). Design a Wind Speed Prediction Model Using Probabilistic Fuzzy System. IEEE Transactions on Industrial Informatics, 8 (4), 819-827. doi: https://doi.org/10.1109/TII.2012.2205392
Lee, J., Park, G. L., Kim, E. H. (2012). Development of Wind Speed Prediction Model in Jeju City. En T. Kim, C. Ramos, J. Abawajy, B. H. Kang, D. Ślęzak, H. Adeli (Eds.), Computer Applications for Modeling, Simulation, and Automobile, 341, (pp. 20–26), Berlin, Heidelberg: Springer. doi: https://doi.org/10.1007/978-3-642-35248-5_4
Hervás-Martínez, C., Salcedo-Sanz, S., Gutiérrez, P. A., Ortiz-García, E. G., Prieto, L. (2012). Evolutionary product unit neural networks for short-term wind speed forecasting in wind farms. Neural Computing and Applications, 21 (5), 993-1005. doi: https://doi.org/10.1007/s00521-011-0582-x
Lujano-Rojas, J. M., Bernal-Agustín, J. L., Dufo-López, R., Domínguez-Navarro, J. A. (2011). Forecast of Hourly Average Wind Speed Using ARMA Model with Discrete Probability Transformation. Electrical Engineering and Control, 98, 1003-1010. doi: https://doi.org/10.1007/978-3-642-21765-4_125
Kiplangat, D. C., Asokan, K., Kumar, K. S. (2016). Improved week-ahead predictions of wind speed using simple linear models with wavelet decomposition. Renewable Energy, 93, 38-44. doi: https://doi.org/10.1016/j.renene.2016.02.054
Lydia, M., Suresh Kumar, S., Immanuel Selvakumara, A., Edwin Prem Kumarc, G. (2016). Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Conversion and Management, 112, 115-124. doi: https://doi.org/10.1016/j.enconman.2016.01.007
Barbounis, T. G., Theocharis, J. B. (2007). Locally recurrent neural networks for wind speed prediction using spatial correlation. Information Sciences, 177 (24), 5775-5797. doi: https://doi.org/10.1016/j.ins.2007.05.024
Cardenas-Barrera, J. L., Castillo-Guerra, E., Meng, J., Chang, L. (2013). Multi-step-ahead, Short-Term Prediction of Wind Speed Using a Fusion Approach. En J. Ruiz-Shulcloper, G. Sanniti di Baja (Eds.), Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2013. Lecture Notes in Computer Science (pp. 83-91). Berlin: Springer. doi: https://doi.org/10.1007/978-3-642-41827-3_11
Gnana Sheela, K., Deepa, S. N. (2013). Neural network based hybrid computing model for wind speed prediction. Neurocomputing, 122, 425-429. doi: https://doi.org/10.1016/j.neucom.2013.06.008
El-Fouly, T. H., El-Saadany, E., Salama, M. A. (2008). One Day Ahead Prediction of Wind Speed and Direction. IEEE Transactions on Energy Conversion, 23 (1), 191-201. doi: https://doi.org/10.1109/TEC.2007.905069
Gnana Sheela, K., Deepa, S. N. (2013). Performance Analysis of Modeling Framework for Prediction in Wind Farms Employing Artificial Neural Networks. Soft Computing, 18 (3), 607-615. doi: https://doi.org/10.1007/s00500-013-1084-9
Heinermann, J., Kramer, O. (2015). Short-Term Wind Power Prediction with Combination of Speed and Power Time Series. En S. Hölldobler, R. Peñaloza, S. Rudolph (Eds.), KI 2015: Advances in Artificial Intelligence. Lecture Notes in Computer Science (pp. 100-110). Cham: Springer. doi: https://doi.org/10.1007/978-3-319-24489-1_8
Kusiak, A., Zhang, Z. (2010). Short-Horizon Prediction of Wind Power: A Data-Driven Approach. IEEE Transaction on Energy Conversion, 25 (4), 1112-1122. doi: https://doi.org/10.1109/TEC.2010.2043436
Doucoure, B., Agbossou, K., Cardenas, A. (2011). Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data. Renewable Energy, 92, 202-211. doi: https://doi.org/10.1016/j.renene.2016.02.003
Kulkarni, M., Patil, S., Rama, G. V., Sen, P. N. (2008). Wind speed prediction using statistical regression and neural network. Journal of Earth System Science, 117 (4), 457-463. doi: https://doi.org/10.1007/s12040-008-0045-7
Hu, Q., Zhang, R., Zhou, Y. (2015). Transfer learning for short-term wind speed prediction with deep neural networks. Renewable Energy, 85, 83-95. doi: https://doi.org/10.1016/j.renene.2015.06.034
Ghorbani, M. A., Khatibi, R., Hosseini, B., Bilgili, M. (2013). Relative importance of parameters affecting wind speed prediction using artificial neural networks. Theoretical and Applied Climatology, 114, 107-114. doi: https://doi.org/10.1007/s00704-012-0821-9
Deligiorgi, D., Philippopoulos, K., Kouroupetroglou, G. (2013). Artificial Neural Network Based Methodologies for the Estimation of Wind Speed. En F. Cavallaro (Eds.), Assessment and Simulation Tools for Sustainable Energy Systems. Green Energy and Technology (pp. 247-266). London: Springer.
Ernst, B., Oakleaf, B., Ahlstrom, M. L., Lange, M., Moehrlen, C., Lange, B., Focken, U., Rohrig, K. (2007). Predicting the Wind. IEEE Power and Energy Magazine, 5 (6), 78-89. doi: https://doi.org/10.1109/MPE.2007.906306
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Revista de Investigación en Tecnologías de la Información
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Esta revista proporciona un acceso abierto a su contenido, basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global del conocimiento.
El texto publicado en la Revista de Investigación en Tecnologías de la Información (RITI) se distribuye bajo la licencia Creative Commons (CC BY-NC), que permite a terceros utilizar lo publicado citando a los autores del trabajo y a RITI, pero sin hacer uso del material con propósitos comerciales.