Design and experimental evaluation of a fuzzy pid controller for the dji tello edu drone

Authors

DOI:

https://doi.org/10.36825/RITI.13.32.007

Keywords:

Fuzzy-PID Control, Drone, DJI Tello Edu, Adaptive Stabilization, Fuzzy Logic

Abstract

This study proposes a PID-Difuso controller to enhance stabilization of the DJI Tello Edu drone, addressing limitations of conventional PID controllers in dynamic environments. Traditional PID controllers exhibit rigidity when confronted with external disturbances (wind, mass variations) and the inherent nonlinearity of UAVs, resulting in residual oscillations and tracking errors. The proposed solution integrates a two-layer hybrid architecture:

  • Fuzzy layer: dynamically adjusts PID gains (K_p, K_i, K_d) through heuristic rules based on angular error (e) and its derivative (ė), employing Mamdani inference with triangular membership functions.
  • PID layer: executes the control law with real-time adaptive parameters.

Autonomous flight experiments—including straight trajectories and 180° turns—demonstrated significant improvements over the conventional PID:

  • RMS yaw error reduced by 23.1%.
  • MAE yaw error reduced by 25.9%.
  • Settling time decreased by 28.6%.
  • Energy consumption decreased by up to 13.1%, extending flight autonomy.
  • Maximum yaw error during critical maneuvers reduced by 44.4%.

The hybrid controller optimizes the trade-off between precision and adaptability. Validation under controlled conditions utilized 20 Hz WiFi telemetry and standardized metrics (RMSE, MAE, control energy). Implementation on a low-cost platform such as the DJI Tello Edu democratizes access to advanced control systems for education and research.

References

Caldas, K. A. Q., Benevides, J. R. S., Inoue, R. S., Terra, M. H. (2022). Autonomous Robust Navigation System for MAV Based on Monocular Cameras. International Conference on Unmanned Aircraft Systems (ICUAS). Dubrovnik, Croatia. https://doi.org/10.1109/ICUAS54217.2022.9836218

Lin, H.-Y., Peng, X.-Z. (2021). Autonomous Quadrotor Navigation With Vision Based Obstacle Avoidance and Path Planning. IEEE Access, 9, 102450–102459. https://doi.org/10.1109/ACCESS.2021.3097945

Amir, M. Y., Abbass, V. (2008). Modeling of Quadrotor Helicopter Dynamics. International Conference on Smart Manufacturing Application. Goyangi, South Korea. https://doi.org/10.1109/ICSMA.2008.4505621

Boudjit, K., Larbes, C. (2013). Control and stabilization applied to micro quadrotor AR.Drone. 3rd International Conference on Application and Theory of Automation in Command and Control Systems. Nápoles, Italia. https://doi.org/10.1145/2494493.2494511

Ogata, K. (2010). Modern control engineering (5th Ed.). Prentice Hall.

Santoso, F., Garratt, M. A., Anavatti, S. G. (2020). Hybrid PD-Fuzzy and PD Controllers for Trajectory Tracking of a Quadrotor Unmanned Aerial Vehicle: Autopilot Designs and Real-Time Flight Tests. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51 (4), 1817–1829. https://doi.org/10.1109/TSMC.2019.2906320

Mamdani, E. H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the Institution of Electrical Engineers, 121 (12). https://doi.org/10.1049/piee.1974.0328

Ferdaus, M. M., Anavatti, S. G., Pratama, M., Garratt, M. A. (2020). Towards the use of fuzzy logic systems in rotary wing unmanned aerial vehicle: a review. Artificial Intelligence Review, 53 (1), 257–290. https://doi.org/10.1007/s10462-018-9653-z

Al-Fetyani, M., Hayajneh, M., Alsharkawi, A. (2021). Design of an Executable ANFIS-based Control System to Improve the Attitude and Altitude Performances of a Quadcopter Drone. International Journal of Automation and Computing, 18 (1), 124–140. https://doi.org/10.1007/s11633-020-1251-2

Amertet, S., Gebresenbet, G., Alwan, H. M. (2024). Modeling of Unmanned Aerial Vehicles for Smart Agriculture Systems Using Hybrid Fuzzy PID Controllers. Applied Sciences, 14 (8), 1-27. https://doi.org/10.3390/app14083458

Polat, O., Sezgin, A. (2024). Position Control of a Quadcopter With Pid and Fuzzy-Pid Controller. Journal of Engineering Sciences and Design, 12 (1), 34–48. https://doi.org/10.21923/jesd.1223998

Guevara-Bonilla, M., Meza-Leandro, A. S., Esquivel-Segura, E. A., Arias-Aguilar, D., Tapia-Arenas, A., & Masís Meléndez, F. (2020). Uso de vehículos aéreos no tripulados (VANTs) para el monitoreo y manejo de los recursos naturales: una síntesis. Revista Tecnología En Marcha, 33 (4), 77-88. https://doi.org/10.18845/tm.v33i4.4528

Wanore Madebo, N., Merga Abdissa, C., Negash Lemma, L. (2024). Enhanced Trajectory Control of Quadrotor UAV Using Fuzzy PID Based Recurrent Neural Network Controller. IEEE Access, 12, 190454–190469. https://doi.org/10.1109/ACCESS.2024.3516494

Delgado-Reyes, G., Valdez-Martínez, J. S., Hernández-Pérez, M. Á., Pérez-Daniel, K. R., García-Ramírez, P. J. (2022). Quadrotor Real-Time Simulation: A Temporary Computational Complexity-Based Approach. Mathematics, 10 (12), 1-34. https://doi.org/10.3390/math10122032

Zhou, D., Geng, Q. (2015). Multi-model And Fuzzy PID Control for Fixed-wing UAV. International Conference on Mechatronics, Robotics and Automation. https://doi.org/10.2991/icmra-15.2015.103

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8 (3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

Brehm, T., Rattan, K. S. (1995). Hybrid fuzzy logic PID controller. IEEE 3rd International Fuzzy Systems Conference. Orlando, FL, USA. https://doi.org/10.1109/FUZZY.1994.343602

Ryze Tech. (2018). Tello EDU User Manual. https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf

Astuti, G., Longo, D., Melita, C. D., Muscato, G., Orlando, A. (2008). HIL Tuning of UAV for Exploration of Risky Environments. International Journal of Advanced Robotic Systems, 5 (4), 419-424. https://doi.org/10.5772/6227

Saud, L. J., Mohammed, R. S. (2017). Performance Evaluation of a PID and a Fuzzy PID Controllers Designed for Controlling a Simulated Quadcopter Rotational Dynamics Model. Journal of Engineering, 23 (7), 74–93. https://doi.org/10.31026/j.eng.2017.07.05

Bouabdallah, S., Murrieri, P., Siegwart, R. (2004). Design and control of an indoor micro quadrotor. IEEE International Conference on Robotics and Automation. New Orleans, LA, US. https://doi.org/10.1109/ROBOT.2004.1302409

Noordin, A., Mohd Basri, M. A., Mohamed, Z., Mat Lazim, I. (2021). Adaptive PID Controller Using Sliding Mode Control Approaches for Quadrotor UAV Attitude and Position Stabilization. Arabian Journal for Science and Engineering, 46 (2), 963–981. https://doi.org/10.1007/s13369-020-04742-w

Published

2025-11-05

How to Cite

Fuentes Uriarte , J. J., Bojórquez Delgado , G., & Martínez Ramírez , Y. (2025). Design and experimental evaluation of a fuzzy pid controller for the dji tello edu drone. Revista De Investigación En Tecnologías De La Información, 13(32 Especial), 74–83. https://doi.org/10.36825/RITI.13.32.007

Most read articles by the same author(s)