Clustering of poems by suicidal and not suicidal authors using K-means and particle swarm optimization

Authors

DOI:

https://doi.org/10.36825/RITI.09.18.002

Keywords:

Clustering, Metaheuristics, K-Means, Particle Swarm Optimization, Suicidal Ideation Detection

Abstract

Suicide is considered a public health issue, and its early detection and treatment may contribute to its prevention. Automatic detection of suicidal ideation indicators within texts can be a useful tool to prevent it. In this work a corpus was compiled, which consists of poems written by twelve different poets, where six of them committed suicide. Two vector representations were experimented on, one with the total number of words and another with words related to negative emotional concepts. The vectors were clustered using two algorithms: K-Means and a K-Means with Particle Swarm Optimization hybrid. The efficiency of the vector representations and the used algorithms were compared, obtaining as result that, through the hybrid algorithm and the negative emotional concepts vocabulary, the groups of poets with suicidal ideation and without it could be distinguished with an accuracy of 0.98.

References

Instituto Nacional de Estadística, Geografía e Informática. (2019). Estadísticas a propósito del día mundial para la prevención del suicidio. Recuperado de: https://www.inegi.org.mx/contenidos/saladeprensa/aproposito/2019/suicidios2019_Nal.pdf

Ji, S., Pan, S., Li, X., Cambria, E., Long, G., Huang, Z. (2021). Suicidal ideation detection: A review of machine learning methods and applications. IEEE Transactions on Computational Social Systems, 8 (1), 214-226. doi: https://doi.org/10.1109/TCSS.2020.3021467

Pestian, J., Nasrallah, H., Matykiewicz, P., Bennett, A., Leenaars, A. (2010). Suicide note classification using natural language processing: A content analysis. Biomedical informatics insights, 3, 19-28. doi: https://doi.org/10.4137/BII.S4706

Mulholland, M., Quinn, J. (2013). Suicidal tendencies: The automatic classification of suicidal and non-suicidal lyricists using NLP. Trabajo presentado en Proceedings of the 6th International Joint Conference on Natural Language Processing, Nagoya, Japón. Recuperado de: https://www.aclweb.org/anthology/I13-1079.pdf

Zhang, L., Gao, J. (2017). A comparative study to understanding about poetics based on natural language processing. Open Journal of Modern Linguistics, 7 (5), 229-237. doi: https://doi.org/10.4236/ojml.2017.75017

Rebala, G., Ravi, A., Churiwala, S. (2019). An introduction to machine learning (1era. Ed.). Switzerland: Springer. doi: https://doi.org/10.1007/978-3-030-15729-6

Van der Merwe, D. W., Engelbrecht, A. P. (2003). Data clustering using particle swarm optimization. Trabajo presentado en Congress on Evolutionary Computation, Canberra, ACT, Australia. doi: https://doi.org/10.1109/CEC.2003.1299577

Kennedy, J., Eberhart, R. (1995). Particle swarm optimization. Trabajo presentado en International Conference on Neural Networks, Perth, WA, Australia. doi: https://doi.org/10.1109/ICNN.1995

Perez-Rosas, V., Banea, C., Mihalcea, R. (2012). Learning Sentiment Lexicons in Spanish. Trabajo presentado en 8th International Conference on Language Resources and Evaluation, Istanbul, Turkey. Recuperado de: http://lrec-conf.org/proceedings/lrec2012/pdf/1081_Paper.pdf

Published

2021-03-05

How to Cite

Powell González, J. E., Carrillo Ruiz, M., & Somodevilla García, M. J. (2021). Clustering of poems by suicidal and not suicidal authors using K-means and particle swarm optimization. Revista De Investigación En Tecnologías De La Información, 9(18), 14–23. https://doi.org/10.36825/RITI.09.18.002

Issue

Section

Artículos

Most read articles by the same author(s)