Predictive maintenance of electric motors based on TinyML and motor current signature analysis
DOI:
https://doi.org/10.36825/RITI.13.30.006Keywords:
TinyML, Predictive Maintenance, Motor Current Signature, Edge Diagnosis, 1D CNNAbstract
The operational continuity of electric motors is essential for industrial productivity, as unexpected failures result in economic losses and safety risks. This study proposes a predictive diagnostic system based exclusively on Motor Current Signature Analysis (MCSA) with on-device inference using TinyML, targeting resource-constrained environments. The design includes current signal acquisition through a non-invasive transducer, analog conditioning, preprocessing via root mean square calculation in overlapping windows and normalization, and the training of a lightweight one-dimensional convolutional neural network optimized for microcontroller execution. The prototype was evaluated using a class-balanced dataset, applying standard classification metrics and resource usage profiling. The results show perfect discrimination between normal and abnormal conditions associated with power electronics disturbances, with inference times compatible with real-time monitoring and low memory consumption. It is concluded that MCSA, combined with edge inference, is a viable and low-cost alternative for predictive maintenance, particularly in facilities with infrastructure limitations, and that its integration into multivariable systems could expand coverage to mechanical failure modes.
References
Castorena Peña, J. A., Domínguez Lugo, A. J., Cantú González, J. R., Alba Cisneros, D. M. (2024). Técnica de ciencia de datos para el pronóstico de consumo de gas natural en la industria siderúrgica. Revista de Investigación en Tecnologías de la Información, 12 (26), 77–93. https://doi.org/10.36825/RITI.12.26.007
Njor, E., Hasanpour, M. A., Madsen, J., Fafoutis, X. (2024). A Holistic Review of the TinyML Stack for Predictive Maintenance. IEEE Access, 12, 184861-184882. https://doi.org/10.1109/ACCESS.2024.3512860
de la Fuente, R., Radrigan, L., Morales, A. S. (2024). Enhancing Predictive Maintenance in Mining Mobile Machinery through a TinyML-enabled Hierarchical Inference Network (Versión 2). arXiv. https://doi.org/10.48550/ARXIV.2411.07168
Arciniegas, S., Rivero, D., Piñan, J., Diaz, E., Rivas, F. (2025). IoT device for detecting abnormal vibrations in motors using TinyML. Discover Internet of Things, 5 (1), 1-18. https://doi.org/10.1007/s43926-025-00142-4
Kiranyaz, S., Devecioglu, O. C., Alhams, A., Sassi, S., Ince, T., Abdeljaber, O., Avci, O., Gabbouj, M. (2024). Zero-shot motor health monitoring by blind domain transition. Mechanical Systems and Signal Processing, 210, 1-16. https://doi.org/10.1016/j.ymssp.2024.111147
Ayankoso, S., Dutta, A., He, Y., Gu, F., Ball, A., Pal, S. K. (2024). Performance of vibration and current signals in the fault diagnosis of induction motors using deep learning and machine learning techniques. Structural Health Monitoring, 1-17. https://doi.org/10.1177/14759217241289874
Diversi, R., Lenzi, A., Speciale, N., Barbieri, M. (2025). An Autoregressive-Based Motor Current Signature Analysis Approach for Fault Diagnosis of Electric Motor-Driven Mechanisms. Sensors, 25 (4), 1-24. https://doi.org/10.3390/s25041130
Zhang, Q., Wei, X., Wang, Y., Hou, C. (2024). Convolutional Neural Network with Attention Mechanism and Visual Vibration Signal Analysis for Bearing Fault Diagnosis. Sensors, 24 (6), 1-16. https://doi.org/10.3390/s24061831
Ribeiro Junior, R. F., dos Santos Areias, I. A. D., Mendes Campos, M., Teixeira, C. E., Borges da Silva, L. E., Ferreira Gomes, G. (2022). Fault detection and diagnosis in electric motors using 1d convolutional neural networks with multi-channel vibration signals. Measurement, 190. https://doi.org/10.1016/j.measurement.2022.110759
Tan, X., Mahjoubi, S., Zou, X., Meng, W., Bao, Y. (2023). Metaheuristic inverse analysis on interfacial mechanics of distributed fiber optic sensors undergoing interfacial debonding. Mechanical Systems and Signal Processing, 200. https://doi.org/10.1016/j.ymssp.2023.110532
Hua, Z., Shi, J., Luo, Y., Huang, W., Wang, J., Zhu, Z. (2021). Iterative matching synchrosqueezing transform and application to rotating machinery fault diagnosis under nonstationary conditions. Measurement, 173. https://doi.org/10.1016/j.measurement.2020.108592
Zhu, Z., Au, S.-K. (2022). Uncertainty quantification in Bayesian operational modal analysis with multiple modes and multiple setups. Mechanical Systems and Signal Processing, 164. https://doi.org/10.1016/j.ymssp.2021.108205
Bala, A., Rashid, R. Z. J. A., Ismail, I., Oliva, D., Muhammad, N., Sait, S. M., Al-Utaibi, K. A., Amosa, T. I., Memon, K. A. (2024). Artificial intelligence and edge computing for machine maintenance-review. Artificial Intelligence Review, 57 (119), 1-33. https://doi.org/10.1007/s10462-024-10748-9
Tsoukas, V., Gkogkidis, A., Boumpa, E., Kakarountas, A. (2024). A Review on the emerging technology of TinyML. ACM Computing Surveys, 56 (10), 1–37. https://doi.org/10.1145/3661820
Singh, R., Singh Gill, S. (2023). Edge AI: A survey. Internet of Things and Cyber-Physical Systems, 3, 71–92. https://doi.org/10.1016/j.iotcps.2023.02.004
Bartolomé-Tomás, A., Sánchez-Reolid, R., Fernández-Sotos, A., Latorre, J. M., Fernández-Caballero, A. (2020). Arousal Detection in Elderly People from Electrodermal Activity Using Musical Stimuli. Sensors, 20 (17), 1-16. https://doi.org/10.3390/s20174788
M, S., K, S., Prasanth, N. (2022). A novel framework for deployment of CNN models using post-training quantization on microcontroller. Microprocessors and Microsystems, 94. https://doi.org/10.1016/j.micpro.2022.104634
Surianarayanan, C., Lawrence, J. J., Chelliah, P. R., Prakash, E., Hewage, C. (2023). A Survey on Optimization Techniques for Edge Artificial Intelligence (AI). Sensors, 23 (3), 1-33. https://doi.org/10.3390/s23031279
Alajlan, N. N., & Ibrahim, D. M. (2022). TinyML: Enabling of Inference Deep Learning Models on Ultra-Low-Power IoT Edge Devices for AI Applications. Micromachines, 13 (6), 1-22. https://doi.org/10.3390/mi13060851
Paes Salomon, C., Ferreira, C., Sant’Ana, W. C., Lambert-Torres, G., Borges Da Silva, L. E., Bonaldi, E. L., de Lacerda de Oliveira, L. E., Silva Torres, B. (2019). A Study of Fault Diagnosis Based on Electrical Signature Analysis for Synchronous Generators Predictive Maintenance in Bulk Electric Systems. Energies, 12 (8), 1-16. https://doi.org/10.3390/en12081506
Dilena, M., Fedele Dell’Oste, M., Fernández-Sáez, J., Morassi, A., Zaera, R. (2019). Mass detection in nanobeams from bending resonant frequency shifts. Mechanical Systems and Signal Processing, 116, 261–276. https://doi.org/10.1016/j.ymssp.2018.06.022
Namdar, A. (2022). A robust principal component analysis-based approach for detection of a stator inter-turn fault in induction motors. Protection and Control of Modern Power Systems, 7 (48), 1-24. https://doi.org/10.1186/s41601-022-00269-4
Liu, Z., Zhang, P., He, S., Huang, J. (2021). A Review of Modeling and Diagnostic Techniques for Eccentricity Fault in Electric Machines. Energies, 14 (14), 1-21. https://doi.org/10.3390/en14144296
Brockmann, S., Schlippe, T. (2024). Optimizing Convolutional Neural Networks for Image Classification on Resource-Constrained Microcontroller Units. Computers, 13 (7), 1-18. https://doi.org/10.3390/computers13070173
Vela, D., Sharp, A., Zhang, R., Nguyen, T., Hoang, A., & Pianykh, O. S. (2022). Temporal quality degradation in AI models. Scientific Reports, 12(1), 11654. https://doi.org/10.1038/s41598-022-15245-z
Mudraje, I., Vogelgesang, K., Herfet, T. (2025). A 1-D CNN inference engine for constrained platforms (Versión 1). arXiv. https://doi.org/10.48550/ARXIV.2501.17269
Lamrini, M., Chkouri, M. Y., Touhafi, A. (2023). Evaluating the Performance of Pre-Trained Convolutional Neural Network for Audio Classification on Embedded Systems for Anomaly Detection in Smart Cities. Sensors, 23 (13), 127. https://doi.org/10.3390/s23136227
Ooko, S. O., Karume, S. M. (2024). Application of Tiny Machine Learning in Predicative Maintenance in Industries. Journal of Computing Theories and Applications, 2 (1), 131–150. https://doi.org/10.62411/jcta.10929
Bolat, Y., Murray, I., Ren, Y., Ferdosian, N. (2025). Decentralized Distributed Sequential Neural Networks Inference on Low-Power Microcontrollers in Wireless Sensor Networks: A Predictive Maintenance Case Study. Sensors, 25 (15), 1-32. https://doi.org/10.3390/s25154595
Azari, M. S., Flammini, F., Santini, S., Caporuscio, M. (2023). A Systematic Literature Review on Transfer Learning for Predictive Maintenance in Industry 4.0. IEEE Access, 11, 12887–12910. https://doi.org/10.1109/ACCESS.2023.3239784
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista de Investigación en Tecnologías de la Información

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Esta revista proporciona un acceso abierto a su contenido, basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global del conocimiento.
El texto publicado en la Revista de Investigación en Tecnologías de la Información (RITI) se distribuye bajo la licencia Creative Commons (CC BY-NC![]()
), que permite a terceros utilizar lo publicado citando a los autores del trabajo y a RITI, pero sin hacer uso del material con propósitos comerciales.
