Predictive maintenance of electric motors based on TinyML and motor current signature analysis

Authors

DOI:

https://doi.org/10.36825/RITI.13.30.006

Keywords:

TinyML, Predictive Maintenance, Motor Current Signature, Edge Diagnosis, 1D CNN

Abstract

The operational continuity of electric motors is essential for industrial productivity, as unexpected failures result in economic losses and safety risks. This study proposes a predictive diagnostic system based exclusively on Motor Current Signature Analysis (MCSA) with on-device inference using TinyML, targeting resource-constrained environments. The design includes current signal acquisition through a non-invasive transducer, analog conditioning, preprocessing via root mean square calculation in overlapping windows and normalization, and the training of a lightweight one-dimensional convolutional neural network optimized for microcontroller execution. The prototype was evaluated using a class-balanced dataset, applying standard classification metrics and resource usage profiling. The results show perfect discrimination between normal and abnormal conditions associated with power electronics disturbances, with inference times compatible with real-time monitoring and low memory consumption. It is concluded that MCSA, combined with edge inference, is a viable and low-cost alternative for predictive maintenance, particularly in facilities with infrastructure limitations, and that its integration into multivariable systems could expand coverage to mechanical failure modes.

References

Castorena Peña, J. A., Domínguez Lugo, A. J., Cantú González, J. R., Alba Cisneros, D. M. (2024). Técnica de ciencia de datos para el pronóstico de consumo de gas natural en la industria siderúrgica. Revista de Investigación en Tecnologías de la Información, 12 (26), 77–93. https://doi.org/10.36825/RITI.12.26.007

Njor, E., Hasanpour, M. A., Madsen, J., Fafoutis, X. (2024). A Holistic Review of the TinyML Stack for Predictive Maintenance. IEEE Access, 12, 184861-184882. https://doi.org/10.1109/ACCESS.2024.3512860

de la Fuente, R., Radrigan, L., Morales, A. S. (2024). Enhancing Predictive Maintenance in Mining Mobile Machinery through a TinyML-enabled Hierarchical Inference Network (Versión 2). arXiv. https://doi.org/10.48550/ARXIV.2411.07168

Arciniegas, S., Rivero, D., Piñan, J., Diaz, E., Rivas, F. (2025). IoT device for detecting abnormal vibrations in motors using TinyML. Discover Internet of Things, 5 (1), 1-18. https://doi.org/10.1007/s43926-025-00142-4

Kiranyaz, S., Devecioglu, O. C., Alhams, A., Sassi, S., Ince, T., Abdeljaber, O., Avci, O., Gabbouj, M. (2024). Zero-shot motor health monitoring by blind domain transition. Mechanical Systems and Signal Processing, 210, 1-16. https://doi.org/10.1016/j.ymssp.2024.111147

Ayankoso, S., Dutta, A., He, Y., Gu, F., Ball, A., Pal, S. K. (2024). Performance of vibration and current signals in the fault diagnosis of induction motors using deep learning and machine learning techniques. Structural Health Monitoring, 1-17. https://doi.org/10.1177/14759217241289874

Diversi, R., Lenzi, A., Speciale, N., Barbieri, M. (2025). An Autoregressive-Based Motor Current Signature Analysis Approach for Fault Diagnosis of Electric Motor-Driven Mechanisms. Sensors, 25 (4), 1-24. https://doi.org/10.3390/s25041130

Zhang, Q., Wei, X., Wang, Y., Hou, C. (2024). Convolutional Neural Network with Attention Mechanism and Visual Vibration Signal Analysis for Bearing Fault Diagnosis. Sensors, 24 (6), 1-16. https://doi.org/10.3390/s24061831

Ribeiro Junior, R. F., dos Santos Areias, I. A. D., Mendes Campos, M., Teixeira, C. E., Borges da Silva, L. E., Ferreira Gomes, G. (2022). Fault detection and diagnosis in electric motors using 1d convolutional neural networks with multi-channel vibration signals. Measurement, 190. https://doi.org/10.1016/j.measurement.2022.110759

Tan, X., Mahjoubi, S., Zou, X., Meng, W., Bao, Y. (2023). Metaheuristic inverse analysis on interfacial mechanics of distributed fiber optic sensors undergoing interfacial debonding. Mechanical Systems and Signal Processing, 200. https://doi.org/10.1016/j.ymssp.2023.110532

Hua, Z., Shi, J., Luo, Y., Huang, W., Wang, J., Zhu, Z. (2021). Iterative matching synchrosqueezing transform and application to rotating machinery fault diagnosis under nonstationary conditions. Measurement, 173. https://doi.org/10.1016/j.measurement.2020.108592

Zhu, Z., Au, S.-K. (2022). Uncertainty quantification in Bayesian operational modal analysis with multiple modes and multiple setups. Mechanical Systems and Signal Processing, 164. https://doi.org/10.1016/j.ymssp.2021.108205

Bala, A., Rashid, R. Z. J. A., Ismail, I., Oliva, D., Muhammad, N., Sait, S. M., Al-Utaibi, K. A., Amosa, T. I., Memon, K. A. (2024). Artificial intelligence and edge computing for machine maintenance-review. Artificial Intelligence Review, 57 (119), 1-33. https://doi.org/10.1007/s10462-024-10748-9

Tsoukas, V., Gkogkidis, A., Boumpa, E., Kakarountas, A. (2024). A Review on the emerging technology of TinyML. ACM Computing Surveys, 56 (10), 1–37. https://doi.org/10.1145/3661820

Singh, R., Singh Gill, S. (2023). Edge AI: A survey. Internet of Things and Cyber-Physical Systems, 3, 71–92. https://doi.org/10.1016/j.iotcps.2023.02.004

Bartolomé-Tomás, A., Sánchez-Reolid, R., Fernández-Sotos, A., Latorre, J. M., Fernández-Caballero, A. (2020). Arousal Detection in Elderly People from Electrodermal Activity Using Musical Stimuli. Sensors, 20 (17), 1-16. https://doi.org/10.3390/s20174788

M, S., K, S., Prasanth, N. (2022). A novel framework for deployment of CNN models using post-training quantization on microcontroller. Microprocessors and Microsystems, 94. https://doi.org/10.1016/j.micpro.2022.104634

Surianarayanan, C., Lawrence, J. J., Chelliah, P. R., Prakash, E., Hewage, C. (2023). A Survey on Optimization Techniques for Edge Artificial Intelligence (AI). Sensors, 23 (3), 1-33. https://doi.org/10.3390/s23031279

Alajlan, N. N., & Ibrahim, D. M. (2022). TinyML: Enabling of Inference Deep Learning Models on Ultra-Low-Power IoT Edge Devices for AI Applications. Micromachines, 13 (6), 1-22. https://doi.org/10.3390/mi13060851

Paes Salomon, C., Ferreira, C., Sant’Ana, W. C., Lambert-Torres, G., Borges Da Silva, L. E., Bonaldi, E. L., de Lacerda de Oliveira, L. E., Silva Torres, B. (2019). A Study of Fault Diagnosis Based on Electrical Signature Analysis for Synchronous Generators Predictive Maintenance in Bulk Electric Systems. Energies, 12 (8), 1-16. https://doi.org/10.3390/en12081506

Dilena, M., Fedele Dell’Oste, M., Fernández-Sáez, J., Morassi, A., Zaera, R. (2019). Mass detection in nanobeams from bending resonant frequency shifts. Mechanical Systems and Signal Processing, 116, 261–276. https://doi.org/10.1016/j.ymssp.2018.06.022

Namdar, A. (2022). A robust principal component analysis-based approach for detection of a stator inter-turn fault in induction motors. Protection and Control of Modern Power Systems, 7 (48), 1-24. https://doi.org/10.1186/s41601-022-00269-4

Liu, Z., Zhang, P., He, S., Huang, J. (2021). A Review of Modeling and Diagnostic Techniques for Eccentricity Fault in Electric Machines. Energies, 14 (14), 1-21. https://doi.org/10.3390/en14144296

Brockmann, S., Schlippe, T. (2024). Optimizing Convolutional Neural Networks for Image Classification on Resource-Constrained Microcontroller Units. Computers, 13 (7), 1-18. https://doi.org/10.3390/computers13070173

Vela, D., Sharp, A., Zhang, R., Nguyen, T., Hoang, A., & Pianykh, O. S. (2022). Temporal quality degradation in AI models. Scientific Reports, 12(1), 11654. https://doi.org/10.1038/s41598-022-15245-z

Mudraje, I., Vogelgesang, K., Herfet, T. (2025). A 1-D CNN inference engine for constrained platforms (Versión 1). arXiv. https://doi.org/10.48550/ARXIV.2501.17269

Lamrini, M., Chkouri, M. Y., Touhafi, A. (2023). Evaluating the Performance of Pre-Trained Convolutional Neural Network for Audio Classification on Embedded Systems for Anomaly Detection in Smart Cities. Sensors, 23 (13), 127. https://doi.org/10.3390/s23136227

Ooko, S. O., Karume, S. M. (2024). Application of Tiny Machine Learning in Predicative Maintenance in Industries. Journal of Computing Theories and Applications, 2 (1), 131–150. https://doi.org/10.62411/jcta.10929

Bolat, Y., Murray, I., Ren, Y., Ferdosian, N. (2025). Decentralized Distributed Sequential Neural Networks Inference on Low-Power Microcontrollers in Wireless Sensor Networks: A Predictive Maintenance Case Study. Sensors, 25 (15), 1-32. https://doi.org/10.3390/s25154595

Azari, M. S., Flammini, F., Santini, S., Caporuscio, M. (2023). A Systematic Literature Review on Transfer Learning for Predictive Maintenance in Industry 4.0. IEEE Access, 11, 12887–12910. https://doi.org/10.1109/ACCESS.2023.3239784

Published

2025-11-19

How to Cite

Bojorquez Delgado, G., Bojorquez Delgado, J., & Flores Rosales, M. A. (2025). Predictive maintenance of electric motors based on TinyML and motor current signature analysis. Revista De Investigación En Tecnologías De La Información, 13(30), 71–83. https://doi.org/10.36825/RITI.13.30.006