Determination of the risk of diabetes in Mexico through a simulated annealing optimized fuzzy system

Authors

DOI:

https://doi.org/10.36825/RITI.10.20.011

Keywords:

Risk Prediction, Diabetes, Fuzzy Logic, Simulated Annealing, Optimization

Abstract

According to the World Health Organization, approximately 70% of adults in Mexico are overweight or obese, determining factors in the development of diabetes mellitus type 2. In addition, according to the National Institute of Public Health, 10.3% of those over 20 years old suffer from diabetes. To facilitate decision or classification tasks when treating a patient, experts develop systems based on fuzzy logic, however, this design is not usually infallible, so it is common to optimize them to improve their performance. The present work shows the results of a comparison between the efficiency in predicting the risk of suffering from type 2 diabetes established by the FINDRISC test and an own design fuzzy system optimized by the Simulated Annealing heuristic for 295 patients from Acapulco, Mexico. The comparison shows that the fuzzy system obtains the same sensitivity, but higher specificity values ​​and positive and negative predictive values ​​with general improvement in the confidence intervals, concluding that using the proposed system as an aid in the prevention of type 2 diabetes is viable and yields results attached to the reality of the patients.

References

Organización Mundial de la Salud. (2016). Informe Mundial Sobre la Diabetes. Recuperado de:

http://apps.who.int/iris/bitstream/handle/10665/254649/9789243565255-spa.pdf

Instituto Nacional de Salud Pública. (2018). Encuesta Nacional de Salud y Nutrición. Recuperado de:

http://ensanut.insp.mx/encuestas/ensanut2018/doctos/informes/ensanut_2018_presentacion_resultados.pdf

Mendiola Pastrana, I. R., Urbina Aranda, I. I., Muñoz Simón, A. E., Juanico Morales, G., López Ortiz, G. (2017). Evaluación del desempeño del Finnish Diabetes Risk Score (FINDRSIC) como prueba de tamizaje para diabetes mellitus tipo 2. Atención Familiar, 25 (1), 22-26. doi: http://dx.doi.org/10.22201/facmed.14058871p.2018.1.62925

Reddy Gadekallu, T., Khare, N. (2017). Cuckoo Search Optimized Reduction and Fuzzy Logic Classifier for Heart Disease and Diabetes Prediction. International Journal of Fuzzy System Applications (IJFSA), 6 (2), 25-42. doi: http://dx.doi.org/10.4018/IJFSA.2017040102

Sahu, N., Verma, T., Reddy, G. T. (2017). Diabetes classification using fuzzy logic and adaptive cuckoo search optimization techniques. International Journal on Future Revolution in Computer Science & Communication Engineering (IJFRCSCE), 3 (9), 252-255. Recuperado de: http://www.ijfrcsce.org/index.php/ijfrcsce/article/view/253/253

Bressan, G. M., Flamia Azevedo, B. C., Molina de Souza, R. (2020). A Fuzzy Approach for Diabetes Mellitus Type 2 Classification. Brazilian Archives of Biology and Technology, 63, 1-11. doi: https://doi.org/10.1590/1678-4324-2020180742

Pradini, R. S., Previana, C. N., Bachtiar, F. A. (2020). Fuzzy Tsukamoto Membership Function Optimization Using PSO to Predict Diabetes Mellitus Risk Level. Trabajo presentado en 5th International Conference on Sustainable Information Engineering and Technology, New York, United States. doi: https://doi.org/10.1145/3427423.3427451

Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8 (3), 338-353. doi: https://doi.org/10.1016/S0019-9958(65)90241-X

Roos, T. J. (2010). Fuzzy Logic with Engineering Applications (3rd Ed.). EUA: John Wiley & Sons.

Jain, V., Raheja, S. (2015). Improving the Prediction Rate of Diabetes using Fuzzy Expert System. International Journal of Information Technology and Computer Science (IJITCS), 7 (10), 84-91. doi: https://doi.org/10.5815/ijitcs.2015.10.10

Martí, R. (2021). Procedimientos Metaheurísticos en Optimización Combinatoria. Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Valencia. Recuperado de https://www.uv.es/rmarti/paper/docs/heur1.pdf

Yang, X. S. (2014). Nature-Inspired Optimization Algorithms (1st Ed.). EUA: Elsevier. doi: https://doi.org/10.1016/C2013-0-01368-0

Lindström, J., Tuomilehto, J. (2003). The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care, 26 (3), 725-731. doi: https://doi.org/10.2337/diacare.26.3.725

Instituto Mexicano del Seguro Social. (2018). Diagnóstico y Tratamiento Farmacológico de la Diabetes Mellitus Tipo 2 en el Primer Nivel de Atención. Catálogo Maestro de Guías de Práctica Clínica. Recuperado de:

http://www.imss.gob.mx/sites/all/statics/guiasclinicas/718GER.pdf

Bravo-Grau, S., Cruz, J. P. (2015). Estudios de exactitud diagnóstica: Herramientas para su Interpretación. Revista Chilena de Radiología, 21 (4), 158-164. doi: https://doi.org/10.4067/S0717-93082015000400007

Ochoa Sangrador, C., Orejas, G. (1999). Epidemiología y metodología científica aplicada a la pediatría (IV): Pruebas diagnósticas. Anales Españoles de Pediatría, 50 (3), 301-314. Recuperado de: https://www.aeped.es/anales/50/3/epidemiologia-y-metodologia-cientifica-aplicada-pediatria-iv-pr

Published

2022-06-20

How to Cite

Morales Márquez, L. E., Carrillo Ruiz, M., García Juárez, P., & Colmenares Guillén, L. E. (2022). Determination of the risk of diabetes in Mexico through a simulated annealing optimized fuzzy system. Revista De Investigación En Tecnologías De La Información, 10(20), 130–144. https://doi.org/10.36825/RITI.10.20.011

Issue

Section

Artículos