Accent identification in spanish speakers through MFCC attribute analysis and supervised learning
DOI:
https://doi.org/10.36825/RITI.12.26.002Keywords:
Accent Recognition, MFCC, Machine Learning Algorithms, Supervised LearningAbstract
Speaker recognition has multiple real-life applications. The purpose of this study is to determine the feasibility of classifying samples of human speech, specifically Spanish speakers, based on their distinctive accents. In this work, Mel-Frequency Cepstral Coefficients (MFCC) combined with machine learning techniques were used to identify the nationality of Spanish-speaking individuals through voice recordings obtained from the Crowdsourcing Latin American Spanish for Low-Resource Text-to-Speech corpus. Data preprocessing was performed by extracting 50 MFCC from each recording, which formed the dataset for experimentation. Experiments were conducted with different subsets, and the best results were obtained with individuals from four Latin American countries, including both males and females. Neural networks were employed for the classification stage, achieving an accuracy of 99.84%.
References
Wei, H., Cheong-Fat, C., Chiu-Sing, C., Kong-Pang, P. (2006). An efficient MFCC extraction method in speech recognition. IEEE International Symposium on Circuits and Systems (ISCAS), Kos, Greece . https://doi.org/10.1109/ISCAS.2006.1692543
Honnavalli, D., Shylaja, S. S. (2019). Supervised Machine Learning Model for Accent Recognition in English Speech Using Sequential MFCC Features Advances in Artificial Intelligence and Data Engineering. International Conference on Artificial Intelligence and Data Engineering, Udupi, India. https://doi.org/10.1007/978-981-15-3514-7
Mannepalli, K., Narahari Sastry, P., Suman M. (2016). MFCC-GMM based accent recognition system for Telugu speech signals. International Journal of Speech Technology, 9 (19), 87-93. https://doi.org/10.1007/s10772-015-9328-y
Ma, Z., Fokoué, E. (2014). A Comparison of Classifiers in Performing Speaker Accent Recognition Using MFCCs. Open Journal of Statistics, 4 (4), 258-266. http://dx.doi.org/10.4236/ojs.2014.44025
Chervonenkis, A.Y. (2013). Early History of Support Vector Machines. En B. Schölkopf, Z. Luo, V. Vovk, (Eds.) Empirical Inference (pp. 13-20). Springer. https://doi.org/10.1007/978-3-642-41136-6_3
Sigtia, S., Dixon, S. (2014). Improved Music Feature Learning with Deep Neural Networks. IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), Florence, Italy. http://dx.doi.org/10.1109/ICASSP.2014.6854949
Viswanath, P., Hitendra Sarma, T. (2011). An improvement to k-nearest neighbor classifier. IEEE Recent Advances in Intelligent Computational Systems (RAICS), Trivandrum, India. http://dx.doi.org/10.1109/RAICS.2011.6069307
Taha Jijo, B., Mohsin Abdulazeez, A. (2021). Classification Based on Decision Tree Algorithm for Machine Learning. Journal Of Applied Science And Technology Trends. 2 (01), 20-28. http://dx.doi.org/10.38094/jastt20165
Urquiza Aguiar, L., Campos Yucailla, P., Hidalgo Lascano, P., Becerra Camacho, F. (2020). Detección de Nodos en Zonas Ocultas en redes LAA a través de Aprendizaje Automático Supervisado. Revista De Investigación en Tecnologías de la Información (RITI) , 8 (15), 114–127. https://doi.org/10.36825/RITI.08.15.011
del Castillo Collazo, N. (2020). Predicción en el diagnóstico de tumores de cáncer de mama empleando métodos de clasificación. Revista De Investigación En Tecnologías De La Información (RITI), 8 (15), 96–104. https://doi.org/10.36825/RITI.08.15.009
Guevara-Rukoz, A., Demirsahin, I., He, F., Chu, S. C., Sarin, S., Pipatsrisawat, K., Gutkin, A., Butryna, A., Kjartansson, O. (2020). Crowdsourcing Latin American Spanish for Low-Resource Text-to-Speech. Proceedings of the 12th Conference on Language Resources and Evaluation, Marseille, France. https://aclanthology.org/2020.lrec-1.801
McFee, B., McVicar, M., Faronbi ,D., et al. (2023). librosa/librosa: 0.10.1. https://doi.org/10.5281/zenodo.8252662
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12 (85), 2825–2830. https://www.jmlr.org/papers/v12/pedregosa11a.html
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista de Investigación en Tecnologías de la Información
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Esta revista proporciona un acceso abierto a su contenido, basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global del conocimiento.
El texto publicado en la Revista de Investigación en Tecnologías de la Información (RITI) se distribuye bajo la licencia Creative Commons (CC BY-NC), que permite a terceros utilizar lo publicado citando a los autores del trabajo y a RITI, pero sin hacer uso del material con propósitos comerciales.