Modifying the electrical conductivity of commercial ink for inkjet printing using multi-walled carbon nanotubes
DOI:
https://doi.org/10.36825/RITI.07.14.024Keywords:
Carbon Nanotubes, Black Carbon, Conductive Ink, Van der Pauw Method, Resistance by Frame, Raman SpectroscopyAbstract
The electrical conductivity of the black commercial ink was modified by introducing multi-walled carbon nanotubes (CNTs) in percentages of 0.5 to 1.5% by weight. The carboxylic groups, present on the surface of the CNTs, were sufficient for the dispersion of the nanostructures to be adequate in the ink. In addition, no incompatibility was distinguished between the CNTs and the ink components. In fact, a synergy between the black pigment and CNT could be observed. The application of the ink using the modified corrector pen made it possible to obtain uniform lines on ordinary paper based on cellulose fibres and on photographic paper. The patterns drawn by hand with the best conductivity were those made on ordinary paper and whose CNT content was equal to or greater than 1% by weight.
References
Ji, X., Zhang, W., Li, X., Yu, H., Dong, H. (2017). A novel hybrid method combining ASP with PECVD for in-situ low temperature synthesis of vertically aligned carbon nanotube films. Diamond and Related Materials, 77, 16–24. doi: https://doi.org/10.1016/j.diamond.2017.05.008
Thapa, A., Neupane, S., Guo, R., Jungjohann, K. L., Pete, D., Li, W. (2018). Direct growth of vertically aligned carbon nanotubes on stainless steel by plasma enhanced chemical vapor deposition. Diamond and Related Materials, 90, 144–153. Doi: https://doi.org/10.1016/j.diamond.2018.10.012
Inagaki, M., Kang, F., Toyoda, M., Konno, H. (2014). Advanced Materials Science and Engineering of Carbon. Oxford: Elsevier.
An, J., Zhan, Z., Zheng, L. (2016). Controllable Synthesis of Carbon Nanotubes. Industrial Applications of Carbon Nanotubes, 1-45. doi: https://doi.org/10.1016/B978-0-323-41481-4.00001-0
Lepró, X., Lima, M. D., Baughman, R. H. (2010). Spinnable carbon nanotube forests grown on thin, flexible metallic substrates. Carbon, 48 (12), 3621–3627. doi: https://doi.org/10.1016/j.carbon.2010.06.016
Wang, J. N., Luo, X. G., Wu, T., Chen, Y. (2014). High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nature Communications, 5, 1–8. doi: https://doi.org/10.1038/ncomms4848
Kowalczk, D., Brzezinski, S., Makowski, T., Fortuniak, W. (2015). Conductive hydrophobic hybrid textiles modified with carbon nanotubes. Applied Surface Science, 357 (Part A), 1007–1014. doi: https://doi.org/10.1016/j.apsusc.2015.09.132
Park, S. Bin, Lee, M. S., Park, M. (2014). Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites. Carbon Letters, 15 (2), 117–124. doi: http://dx.doi.org/10.5714/CL.2014.15.2.117
Kang, L. X., Li, D., Yong, Z. Z., Zhang, X. H., Li, Q. (2017). Growth of Aligned Carbon Nanotubes and Their Applications. Industrial Applications of Carbon Nanotubes, 381–403. doi: https://doi.org/10.1016/B978-0-323-41481-4.00013-7
Han, J. W., Kim, B., Li, J., Meyyappan, M. (2014). Carbon nanotube ink for writing on cellulose paper. Materials Research Bulletin, 50, 249–253. doi: https://doi.org/10.1016/j.materresbull.2013.10.048
Phillips, C., Al-Ahmadi, A., Potts, S. J., Claypole, T., Deganello, D. (2017). The effect of graphite and carbon black ratios on conductive ink performance. Journal of Materials Science, 52 (16), 9520–9530. doi: https://doi.org/10.1007/s10853-017-1114-6
De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., Hart, A. J. (2013). CNTs: Present and Future Commercial Applications. Science, 339 (6119), 535-539. doi: https://doi.org/10.1126/science.1222453
Kwon, O. S., Kim, H., Ko, H., Lee, J., Lee, B., Jung, C. H., Choi, J. H., Shin, K. (2013). Fabrication and characterization of inkjet-printed carbon nanotube electrode patterns on paper. Carbon, 58, 116–127. doi: https://doi.org/10.1016/j.carbon.2013.02.039
Lin, Z., Le, T., Song, X., Yao, Y., Li, Z., Moon, K., Tentzeris, M. M., Wong, C. (2013). Preparation of Water-Based Carbon Nanotube Inks and Application in the Inkjet Printing of Carbon Nanotube Gas Sensors. Journal of Electronic Packaging, 135 (1), 1-5. doi: https://doi.org/10.1115/1.4023758
Van der Pauw, L. J. (1958). A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Technical Review, 20, 220-224.
Antunes, R. A., De Oliveira, M. C. L., Ett, G., Ett, V. (2011). Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. Journal of Power Sources, 196 (6), 2945–2961. doi: https://doi.org/10.1016/j.jpowsour.2010.12.041
Castro Martínez, M., Hernández López, S., Vigueras Santiago, E. (2015). Relationship between Polymer Dielectric Constant and Percolation Threshold in Conductive Poly(styrene)-Type Polymer and Carbon Black Composites. Journal of Nanomaterials, 2015, 1-9. doi: https://doi.org/10.1155/2015/607896
Lin, Y.-H., Yang, C.-Y., Lin, S.-F., Lin, G.-R. (2015). Triturating versatile carbon materials as saturable absorptive nano powders for ultrafast pulsating of erbium-doped fiber lasers. Optical Materials Express, 5 (2), 236-253.
Kuhlbusch, T. A. J., Fissan, H. (2006). Particle characteristics in the reactor and pelletizing areas of carbon black production. Journal of Occupational and Environmental Hygiene, 3 (10), 558–567. doi: https://doi.org/10.1364/OME.5.000236
Bokobza, L., Bruneel, J.-L., Couzi, M. (2015). Raman Spectra of Carbon-Based Materials (from Graphite to Carbon Black) and of Some Silicone Composites. C, 1 (1), 77–94. doi: https://doi.org/10.3390/c1010077
Düngen, P., Prenzel, M., Stappen, C. Van, Pfänder, N., Heumann, S., Schlögl, R. (2017). Investigation of Different Pre-Treated Multi-Walled Carbon Nanotubes by Raman Spectroscopy. Materials Sciences and Applications, 08 (8), 628–641. doi: https://doi.org/10.4236/msa.2017.88044
Hussain, S., Amade, R., Moreno, H., Bertran, E. (2014). RF-PECVD growth and nitrogen plasma functionalization of CNTs on copper foil for electrochemical applications. Diamond and Related Materials, 49, 55–61. doi: https://doi.org/10.1016/j.diamond.2014.08.006
Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., Pöschl, U. (2005). Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43 (8), 1731–1742. doi: https://doi.org/10.1016/j.carbon.2005.02.018
Osswald, S., Havel, M., Gogotsi, Y. (2007). Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. Journal of Raman Spectroscopy, 38, 728–736. doi: https://doi.org/10.1002/jrs.1686
Dresselhaus, M. S., Dresselhaus, G., Saito, R., Jorio, A. (2005). Raman spectroscopy of carbon nanotubes. Physics Reports, 409 (2), 47-99. doi: https://doi.org/10.1016/j.physrep.2004.10.006
Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K. S., Casiraghi, C. (2012). Probing the nature of defects in graphene by Raman spectroscopy. Nano Letters, 12 (8), 3925–3930. doi: https://doi.org/10.1021/nl300901a
Merlen, A., Buijnsters, J., Pardanaud, C. (2017). A Guide to and Review of the Use of Multiwavelength Raman Spectroscopy for Characterizing Defective Aromatic Carbon Solids: from Graphene to Amorphous Carbons. Coatings, 7 (10), 1-55. doi: https://doi.org/10.3390/coatings7100153
Cançado, L. G., Jorio, A., Pimenta, M. A. (2007). Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size. Physical Review B - Condensed Matter and Materials Physics, 76 (6), 1–7. doi: https://doi.org/10.1103/PhysRevB.76.064304
de Lannoy, C. F., Soyer, E., Wiesner, M. R. (2013). Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization. Journal of Membrane Science, 447, 395–402. doi: https://doi.org/10.1016/j.memsci.2013.07.023
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Revista de Investigación en Tecnologías de la Información
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Esta revista proporciona un acceso abierto a su contenido, basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global del conocimiento.
El texto publicado en la Revista de Investigación en Tecnologías de la Información (RITI) se distribuye bajo la licencia Creative Commons (CC BY-NC), que permite a terceros utilizar lo publicado citando a los autores del trabajo y a RITI, pero sin hacer uso del material con propósitos comerciales.