Modelos de canal de desvanecimiento para comunicaciones Millimeter-Wave

Autores/as

DOI:

https://doi.org/10.36825/RITI.09.17.003

Palabras clave:

Canales Generalizados de Desvanecimiento, Ondas Milimétricas, κ- μ Shadowed, Modelo de Múltiples Rayos Fluctuantes

Resumen

Una evaluación de desempeño realista de cualquier sistema de comunicación inalámbrica requiere el uso de un modelo de canal de desvanecimiento que refleje sus características principales. Los modelos tradicionales Rayleigh y Nakagami-m han sido (y siguen siendo) la base de la mayor parte de investigación teórica sobre tecnologías inalámbricas en la actualidad, incluso para tecnologías emergentes, tal como las comunicaciones en ondas milimétricas. En este artículo, a través del uso del test estadístico error medio cuadrático, mostramos que los modelos FMR y -  shadowed se ajustan de mejor manera a las medidas de campo en ambientes exteriores a 28 GHz que los modelos canal convencionales. Por lo que, estos modelos generalizados se presentan como alternativa físicamente factible que pueden ser utilizados como punto de partida al evaluar el desempeño de comunicaciones en escenarios de ondas milimétricas.  

Citas

Vega Sánchez, J. D., Urquiza-Aguiar, L., Paredes Paredes, M. C., Moya Osorio, D. P. (2020). Survey on physical layer security for 5G wireless networks. Annals of Telecommunications, 1-20. doi: https://doi.org/10.1007/s12243-020-00799-8

Vega Sánchez, J. D., Urquiza-Aguiar, L., Paredes Paredes, M. C. (2019). Physical Layer Security for 5G Wireless Networks: A Comprehensive Survey. Trabajo presetado en 3rd Cyber Security in Networking Conference (CSNet), Quito, Ecuador.

Liu, D., Hong, W., Rappaport, T. S., Luxey, C., Hong, W. (2017). What will 5G Antennas and Propagation Be? IEEE Transactions on Antennas Propagation, 65 (12), 6205–6212. doi: https://doi.org/10.1109/TAP.2017.2774707

Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K. K., Gao, X. (2018). A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead. IEEE Journal on Selected Areas in Communications, 36 (4), 679-695. doi: https://doi.org/10.1109/JSAC.2018.2825560

Moya Osorio, D. P., Vega Sánchez, J. D., Alves, H. (2019). Physical-Layer Security for 5G and Beyond. En R. Tafazolli, C.‐L. Wang, P. Chatzimisios (Eds.), Wiley 5G Ref: The Essential 5G Reference Online. doi: https://doi.org/10.1002/9781119471509.w5GRef152

Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., Di Renzo, M. (2015). Safeguarding 5G Wireless Communication Networks Using Physical Layer Security. IEEE Communications Magazine, 53 (4), 20-27. doi: https://doi.org/10.1109/MCOM.2015.7081071

Lin, Z., Du, X., Chen, H. H., Ai, B., Chen, Z., Wu, D. (2019). Millimeter-Wave Propagation Modeling and Measurements for 5G Mobile Networks. IEEE Wireless Communications, 26 (1), 72–77. doi: https://doi.org/10.1109/MWC.2019.1800035

Paris, J. F. (2014). Statistical Characterization of κ - μ Shadowed Fading. IEEE Transactions Vehicular Technology, 63 (2), 518–526. doi: https://doi.org/10.1109/TVT.2013.2281213

Chun, Y. J. (2018). A Generalized Fading Model with Multiple Specular Components. arXiv. doi: https://arxiv.org/abs/1810.05258

Romero-Jerez, J. M., Lopez-Martinez, F. J., Paris, J. F., Goldsmith, A. J. (2017). The Fluctuating Two-Ray Fading Model: Statistical Characterization and Performance Analysis. IEEE Transactions on Wireless Communications, 16 (7), 4420-4432. doi: https://doi.org/10.1109/TWC.2017.2698445

Samimi, M. K., Maccartney, G. R., Sun, S., Rappaport, T. S. (2016). 28 GHz millimeter-wave ultrawideband small-scale fading models in wireless channels. Trabajo presentado en IEEE Vehicular Technology Conference (VTC Spring), Nanjing, China. doi: https://doi.org/10.1109/VTCSpring.2016.7503970

Abramowitz, M., Stegun, I. A. (1972). Handbook of Mathematical Functions (10th Ed.). New York, NY, USA: Dover Publications.

Brychkov, Y. A., Saad, N. (2011). Some formulas for the Appell function F1 (a, b, b′; c; w, z). Integral Transforms Special Functions, 23 (11), 793–802. doi: https://doi.org/10.1080/10652469.2011.636651

Koymen, O. H., Partyka, A., Subramanian, S., Li, J. (2015). Indoor mm-Wave Channel Measurements: Comparative Study of 2.9 GHz and 29 GHz. Trabajo presentado en IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA. doi: https://doi.org/10.1109/GLOCOM.2015.7417720

Wang, C. X., Ghazal, A., Ai, B., Liu, Y., Fan, P. (2016). Channel Measurements and Models for High-Speed Train Communication Systems: A Survey. IEEE Communications Survey & Tutorials, 18 (2), 974-987. doi: https://doi.org/10.1109/COMST.2015.2508442

Hur, S., Baek, S., Kim, B., Chang, Y., Molisch, A. F., Rappaport, T. S., Haneda, K., Park, J. (2016). Proposal on Millimeter-Wave Channel Modeling for 5G Cellular System. IEEE Journal of Selected Topics in Signal Processing, 10 (3), 454-469. doi: https://doi.org/10.1109/JSTSP.2016.2527364

Romero-Jerez, J. M., Lopez-Martinez, F. J., Paris, J. F., Goldsmith, A. J. (2016). The Fluctuating Two-Ray Fading Model for mmWave Communications. Trabajo presentado en IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA. doi: https://doi.org/10.1109/GLOCOMW.2016.7849062

Mavridis, T., Petrillo, L., Sarrazin, J., Benlarbi-Delai, A., De Doncker, P. (2015). Near-Body Shadowing Analysis at 60 GHz. IEEE Transactions on Antennas and Propagation, 63 (10), 4505-4511. doi: https://doi.org/10.1109/TAP.2015.2456984

Kennedy, J., Eberhart, R. (1995). Particle Swarm Optimization. Trabajo presentado en International Conference on Neural Networks (ICNN), Perth, WA, Australia. doi: https://doi.org/10.1109/ICNN.1995.488968

Chun, Y. J., Cotton, S. L., Dhillon, H. S., Lopez-Martinez, F. J., Paris, J. F., Yoo, S. K. (2017). A comprehensive analysis of 5G heterogeneous cellular systems operating over κ-μ shadowed fading channels. IEEE Transactions on Wireless Communications, 16 (11), 6995–7010. doi: https://doi.org/10.1109/TWC.2017.2734080

Vega Sánchez, J. D., Moya Osorio, D. P., López-Martínez, F. J., Paredes Paredes, M. C., Urquiza-Aguiar, L. (2020). Information-Theoretic Security of MIMO Networks under κ- μ Shadowed Fading Channels. arXiv. doi: https://arxiv.org/abs/2005.02441

Vega Sánchez, J. D., Moya Osorio, D. P., López-Martínez, F. J., Paredes Paredes, M. C., Urquiza-Aguiar, L. (2020). On the Secrecy Performance Over N-Wave with Diffuse Power Fading Channel. IEEE Transactions on Vehicular Technology. doi: https://doi.org/10.1109/TVT.2020.3035544

Hashemi, H., Haghighat, J., Eslami, M., Navaie, K. (2020). Amplify-and-Forward Relaying with Maximal Ratio Combining over Fluctuating Two-Ray Channel: Non-Asymptotic and Asymptotic Performance Analysis. IEEE Transactions on Communications, 68 (12), 7446-7459. doi: https://doi.org/10.1109/TCOMM.2020.3024579

Shi, B., Pallotta, L., Giunta, G., Hao, C., Orlando, D. (2020). Parameter Estimation of Fluctuating Two-Ray Model for Next Generation Mobile Communications. IEEE Transactions on Vehicular Technology, 69 (8), 8684-8697. doi: https://doi.org/10.1109/TVT.2020.2999549

Publicado

2021-01-13

Cómo citar

Vega Sánchez , J. D., Urquiza-Aguiar , L., & Paredes Paredes , M. C. (2021). Modelos de canal de desvanecimiento para comunicaciones Millimeter-Wave . Revista De Investigación En Tecnologías De La Información, 9(17 (Especial), 17–25. https://doi.org/10.36825/RITI.09.17.003