El impacto de la inteligencia artificial y las herramientas digitales en las asignaturas básicas de la educación superior

Autores/as

DOI:

https://doi.org/10.36825/RITI.13.30.002

Palabras clave:

Formación Docente, Competencias Digitales, Educación Superior, Tecnología Educativa

Resumen

La integración de inteligencia artificial (IA) y herramientas digitales en la educación superior ha transformado las metodologías pedagógicas, generando tanto oportunidades como desafíos en asignaturas fundamentales. Este estudio analiza el impacto diferenciado de estas tecnologías en Matemáticas, Lengua y Literatura, Ciencias Naturales, Ciencias Sociales y Lengua Extranjera, mediante un diseño mixto secuencial explicativo que combina una revisión sistemática de 312 estudios indexados con entrevistas semiestructuradas a 15 expertos. Los resultados revelan mejoras significativas en rendimiento, especialmente en CTIM y lenguas, aunque con efectos limitados en habilidades críticas y creativas. Se identifican paradojas clave, como la tensión entre personalización del aprendizaje y homogenización de resultados, así como brechas en formación docente y equidad de acceso. Las conclusiones destacan la necesidad de modelos híbridos que combinen IA con pedagogía tradicional, protocolos éticos para mitigar sesgos y estrategias diferenciadas por disciplina, proponiendo un marco para implementaciones responsables que equilibren innovación tecnológica con calidad educativa.

Citas

Luckin, R. (2018). Machine learning and human intelligence: The future of education for the 21st century. UCL Press. https://discovery.ucl.ac.uk/10178695/1/Machine%20Learning%20and%20Human%20Intelligence.pdf

Warschauer, M. (2012). Language and the Digital Divide. En C. A. Chapelle (Ed.) The Encyclopedia of Applied Linguistics. John Wiley & Sons. https://doi.org/10.1002/9781405198431.wbeal0602

Rutten, N., van Joolingen, W. R., van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58 (1), 136-153. https://doi.org/10.1016/j.compedu.2011.07.017

Lazer, D. M. J., Pentland, A., Watts, D. J., Aral, S., Athey, S., Contractor, N., Freelon, D., Gonzalez-Bailon, S., King, G., Margetts, H., Nelson, A., Salganik, M. J., Strohmaier, M., Vespignani, A., Wagner, C (2020). Computational social science: Obstacles and opportunities. Science, 369 (6507), 1060-1062. https://doi.org/10.1126/science.aaz8170

Godwin-Jones, R. (2022). Language tools and technologies. Language Learning & Technology, 26 (2), 1-19. https://www.lltjournal.org/item/10125-73474/

UNESCO. (2021). AI and education: Guidance for policy-makers. https://unesdoc.unesco.org/ark:/48223/pf0000376709

Selwyn, N. (2019). Should robots replace teachers? AI and the future of education. Polity Press.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46 (4), 197-221. https://doi.org/10.1080/00461520.2011.611369

Ruiz Muñoz, G. F. (2024). Integración de la tecnología y la pedagogía en los sistemas de tutoría inteligente. Edutec, Revista Electrónica de Tecnología Educativa, (89), 144–155. https://doi.org/10.21556/edutec.2024.89.3199

Hyland, K., Hyland, F. (2019). Contexts and Issues in Feedback on L2 Writing. En K. Hyland, F. Hyland (Eds.), Feedback in Second Language Writing: Contexts and Issues (pp. 1–22). Cambridge University Press.

Cotton, D. R. E., Cotton, P. A., Shipway, J. R. (2023). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 61 (2), 228–239. https://doi.org/10.1080/14703297.2023.2190148

Herga, N. R., Čagran, B., Dinevski, D. (2016). Virtual laboratory in chemistry. Eurasia Journal of Mathematics, Science & Technology Education, 12 (3), 593-608. https://doi.org/10.12973/eurasia.2016.1224a

Gibbs, G. R. (2018). Analyzing qualitative data (2nd ed.). SAGE. https://doi.org/10.4135/9781526441867

Chassignol, M., Khoroshavin, A., Klimova, A., Bilyatdinova, A. (2018). Artificial intelligence trends in education. Procedia Computer Science, 136, 16-24. https://doi.org/10.1016/j.procs.2018.08.233

Käser, T., Klingler, S., Schwing, A. G., Gross, M. (2017). Dynamic Bayesian networks for student modeling. IEEE Transactions on Learning Technologies, 10 (4), 450-462. https://doi.org/10.1109/TLT.2017.2689017

Akçayır, M., Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1–11. https://doi.org/10.1016/j.edurev.2016.11.002

boyd, d., Crawford, K. (2012). Critical questions for big data. Information, Communication & Society, 15 (5), 662-679. https://doi.org/10.1080/1369118X.2012.678878

Ke, F. (2019). Mathematical problem solving and game design. Educational Technology Research and Development, 67 (5), 1085-1104. https://doi.org/10.1007/s11423-018-09643-2

Swales, J. M., Feak, C. B. (2012). Academic writing for graduate students (3rd ed.). University of Michigan Press. https://doi.org/10.3998/mpub.2173936

Perkins, M. (2023). Academic Integrity considerations of AI Large Language Models in the post-pandemic era: ChatGPT and beyond. Journal of University Teaching and Learning Practice, 20 (2). https://doi.org/10.53761/1.20.02.07

Bamman, D., Underwood, T., Smith, N. A. (2014). A Bayesian mixed effects model of literary character. 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 370–379). Association for Computational Linguistics. https://aclanthology.org/P14-1035

Lee, K. (2012). Augmented Reality in Education and Training. Tech Trends, 56, 13–21. https://doi.org/10.1007/s11528-012-0559-3

Moore, E. B., Chamberlain, J. M., Parson, R., Perkins, K. K. (2014). PhET interactive simulations. Journal of Chemical Education, 91 (8), 1191-1197. https://doi.org/10.1021/ed4005084

Olympiou, G., Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: An effort to improve students’ conceptual understanding through science laboratory experimentation. Science Education, 96 (1), 21–47. https://doi.org/10.1002/sce.20463

Makransky G, Borre-Gude S, Mayer R. E. (2019). Motivational and cognitive benefits of training in immersive virtual reality based on multiple assessments. Journal of Computer Assisted Learning, 35, 691–707. https://doi.org/10.1111/jcal.12375

Owan, V. J., Abang, K. B., Idika, D. O., Etta, E. O., Bassey, B. A. (2023). Exploring the potential of artificial intelligence tools in educational measurement and assessment. Eurasia Journal of Mathematics, Science and Technology Education, 19 (8), 1-15. https://doi.org/10.29333/ejmste/13428

Hooda, M., Rana, C., Dahiya, O., Rizwan, A., Hossain, M. S. (2022). Artificial Intelligence for Assessment and Feedback to Enhance Student Success in Higher Education. Mathematical Problems in Engineering, 2022, 1-19. https://doi.org/10.1155/2022/5215722

OECD. (2023). OECD Digital Education Outlook 2023: Towards an Effective Digital Education Ecosystem, OECD Publishing. https://doi.org/10.1787/c74f03de-en

National Science Teaching Association. (2025). Connected Science Learning. NSTA Press. https://www.nsta.org/connected-science-learning

Ding, A.W., Li, S. (2025). Generative AI lacks the human creativity to achieve scientific discovery from scratch. Scientific Reports, 15, 1-2. https://doi.org/10.1038/s41598-025-93794-9

UNESCO. (2024). Revitalizing STEM education to equip next generations with STEM competency. https://www.unesco.org/en/articles/revitalizing-stem-education-equip-next-generations-stem-competency

Tufekci, Z. (2017). Twitter and tear gas: The power and fragility of networked protest. Yale University Press. https://doi.org/10.25969/mediarep/14848

Johnson, R. B., Onwuegbuzie, A. J., Turner, L. A. (2007). Toward a Definition of Mixed Methods Research. Journal of Mixed Methods Research, 1 (2), 112–133. https://doi.org/10.1177/1558689806298224

Winthereik, B. R. (2017). Noortje Marres (forthcoming, March 2017) Digital Sociology: The reinvention of social research. Cambridge: Polity Press. Science & Technology Studies, 30 (1), 54–55. https://doi.org/10.23987/sts.60428

Mullainathan, S., Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of Economic Perspectives, 31 (2), 87-106. https://doi.org/10.1257/jep.31.2.87

O'Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown Publishing. https://dl.acm.org/doi/10.5555/3002861

Snee, H., Hine, C., Morey, Y., Roberts, S., Watson, H. (2016). Digital Methods for Social Science: An Interdisciplinary Guide to Research Innovation. Palgrave Macmillan. https://doi.org/10.1057/9781137453662

UNESCO. (2021). UNESCO science report: The race against time for smarter development. UNESCO. https://doi.org/10.18356/9789210058575

Townsend, L., Wallace, C. (2017). The ethics of using social media data in research: A new framework. En K. Woodfield (Ed.), The ethics of online research (pp. 189–207). Emerald Publishing Limited. https://doi.org/10.1108/S2398-601820180000002008

Conte, R., Gilbert, N., Bonelli, G., Cioffi-Revilla, C., Deffuant, G., Kertesz, J., Loreto, V., Moat, S., Nadal, J.-P., Sanchez, A., Nowak, A., Flache, A., San Miguel, M., Helbing, D. (2012). Manifesto for computational social science. The European Physical Journal Special Topic, 214 (1), 325-346. https://doi.org/10.1140/epjst/e2012-01697-8

Castells, M. (2005). La era de la información: economía, sociedad y cultura. Vol. I. La sociedad red. Alianza Editorial. https://www.alianzaeditorial.es/libro/libros-singulares-ls/la-era-de-la-informacion-economia-sociedad-y-cultura-manuel-castells-9788420677002/

Duolingo. (2023). Duolingo Language Report 2023. https://blog.duolingo.com/2023-duolingo-language-report/

Godwin-Jones, R. (2021). Big data and language learning: Opportunities and challenges. Language Learning & Technology, 25 (1), 4–19. https://doi.org/10.64152/10125/44747

Sun, W. (2023). The impact of automatic speech recognition technology on second language pronunciation and speaking skills of EFL learners: A mixed methods investigation. Frontiers in Psychology, 14, 1-14. https://doi.org/10.3389/fpsyg.2023.1210187

Holstein, K., Wortman Vaughan, J., Daumé, H. III, Dudík, M., Wallach, H. (2019). Improving fairness in machine learning systems: What do industry practitioners need? CHI Conference on Human Factors in Computing Systems, Glasgow Scotland, Uk. https://doi.org/10.1145/3290605.3300830

Chen, B., Wang, Y., Wang, L. (2022). The Effects of Virtual Reality-Assisted Language Learning: A Meta-Analysis. Sustainability, 14 (6), 1-18. https://doi.org/10.3390/su14063147

Pearson. (2021). Versant English Test: Official guide for test-takers (v1.0). Pearson. https://www.pearson.com/content/dam/one-dot-com/one-dot-com/pearson-languages/en-gb/pdfs/versant-resources/official-test-guide-versant-english-test.pdf

Link, S., Koltovskaia, S. (2023). Automated Scoring of Writing. En O. Kruse, C. Rapp, C. A. Anson, K. Benetos, E. Cotos, A. Devitt, A. Shibani (Eds.), Digital Writing Technologies in Higher Education (pp. 333-345). Springer, Cham. https://doi.org/10.1007/978-3-031-36033-6_21

UNESCO. (2021). World Atlas of Languages. https://unesdoc.unesco.org/ark:/48223/pf0000380132

TESOL International Association. (2023). TESOL Research Directions 2023-2027: Final report. https://www.tesol.org/media/ob2g5gdz/final2023_recommendations_how-we-got-here_1-dec_formatted.pdf

European Commission. (2019). Ethics guidelines for trustworthy AI. https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

Paniagua, A., Istance, D. (2018). Teachers as designers of learning environments: The importance of innovative pedagogies. OECD Publishing. https://doi.org/10.1787/9789264085374-en

Pegrum, M., Hockly, N., Dudeney, G. (2022). Digital literacies (2.ª ed.). Routledge. https://doi.org/10.4324/9781003262541

Yarrow, N., Shen, S., Alyono, K. (2023). Using education technology to improve K–12 student learning: Evidence from low- and middle-income countries. World Bank Group. https://openknowledge.worldbank.org/handle/10986/40508

Descargas

Publicado

2025-09-01

Cómo citar

Ruiz Muñoz, G. F. (2025). El impacto de la inteligencia artificial y las herramientas digitales en las asignaturas básicas de la educación superior. Revista De Investigación En Tecnologías De La Información, 13(30), 9–24. https://doi.org/10.36825/RITI.13.30.002

Número

Sección

Artículos