Building OLAP Cube in Microsoft Analysis Services and Microsoft Excel
DOI:
https://doi.org/10.36825/RITI.08.15.005Keywords:
OLAP Cubes, Construction, Analysis Services, Excel, DatabaseAbstract
This research work results from the construction of an OLAP cube (Online Analytical Processing). The objective is to show how the construction of an OLAP cube is, using the tools of Microsoft Analysis Services and Microsoft Excel, from a database obtained from a survey conducted by INEGI in 2016, which It is taken as an example in this investigation; the model developed was the waterfall model, where the five stages of this model were implemented, which are the stage of communication, planning, modeling, construction and deployment; One of the main conclusions that were obtained with the accomplishment of this investigation was that the tools of Microsoft Analysis Services and Microsoft Excel, help in the realization of the processing and analysis of data of a database by means of dimensions and measures.
References
Turban, E., Sharda, R., Delen, D. (2011). Decision support and business intelligence systems (9na. ed.). Upper Saddle River, NJ: Prentice Hall.
Roldán Salgueiro, J. L., Cepeda Carrión, G., Galán González, J. L. (2012). Los sistemas de inteligencia de negocios como soporte a los procesos de toma de decisiones en las organizaciones. Papeles de Economía Española, 132, 239-260. Recuperado de: https://idus.us.es/xmlui/handle/11441/76099
Codd, E. F., Codd, S. B., Salley, C. T. (1993). Providing OLAP to user-analysts: An IT mandate. Toronto, Canada: E. F. Codd & Associates.
Kimball, R., Reeves, L., Ross, M., Thornthwaite, W. (1998). The Data Warehouse Lifecycle Toolkit: expert Methods for designing, developing and deploying data warehouses. New York, NY: John Wiley & Sons, Inc.
Koperski, K., Han J., Stefanovic, N. (2001). An Efficient two-step method for classification of Spatial Data. Recuperado de: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.2505
Abril Frade, D. O., Pérez Castillo, J. N. (2007). Estado actual de las tecnologías de bodega de datos y OLAP aplicadas a base de datos espaciales. Revista Ingeniería e Investigación, 27 (1), 58-67. Recuperado de: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-56092007000100008
Bédard, Y., Merrett, T., Han, J. (2001). Fundamentals of spatial data warehousing for geographic knowledge discovery. En H. Miller and J. Han (Eds.), Geographic data mining and knowledge discovery (pp. 53-73). London: CRC Press.
Microsoft. (2017). Analysis Services. Recuperado de: https://docs.microsoft.com/es-es/sql/analysis-services/analysis-services?view=sql-server-2014
Carballeiro, G. (2013). Excel 2013: guía práctica para el usuario. Recuperado de: https://www.tesuva.edu.co/phocadownloadpap/Guia%20basica%20excel%202013.pdf
Hernández, R., Fernández, C., Baptista, P. (2014). Metodología de la investigación (6ta. ed.). México: McGraw-Hill.
Pressman, R. (2010). Ingeniería del software: Un enfoque práctico (7ma. Ed.). México: McGraw-Hill.
Instituto Nacional de Estadística y Geografía [INEGI]. (2017). Encuesta Nacional de Ingresos y Gastos de los Hogares (ENIGH), 2016 nueva serie. Recuperado de: https://www.inegi.org.mx/programas/enigh/nc/2016/
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista de Investigación en Tecnologías de la Información

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Esta revista proporciona un acceso abierto a su contenido, basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global del conocimiento.
El texto publicado en la Revista de Investigación en Tecnologías de la Información (RITI) se distribuye bajo la licencia Creative Commons (CC BY-NC), que permite a terceros utilizar lo publicado citando a los autores del trabajo y a RITI, pero sin hacer uso del material con propósitos comerciales.