Evaluation of the perception of public services in Colombia through Text Mining using Twitter

Authors

  • Carlos Eduardo Gomez Rivera Escuela Colombiana de Ingeniería Julio Garavito
  • Dante Conti Escuela Colombiana de Ingeniería Julio Garavito
  • Juan Guillermo Jaramillo Yepes Escuela Colombiana de Ingeniería Julio Garavito
  • Victoria Eugenia Ospina Becerra Escuela Colombiana de Ingeniería Julio Garavito

DOI:

https://doi.org/10.36825/RITI.10.22.004

Keywords:

Twitter, Text Mining, Service Perception, Dictionaries - Lexicons, Sentiment Analysis

Abstract

In Bogota, the public service providers are Enel, Vanti and Acueducto, big companies that are characterized by a customer centricity operation. However, these companies are the ones with the highest number of complaints and claims reported to regulatory entities. The perception of service may not be the best. Determining the veracity of this fact is the objective of this research, through the exploitation of text mining techniques by taking advantage of the voice of the customer in the user’s tweets; applying the Knowledge Discovery in Databases methodology to generate the database composed of 9071 tweets of these three companies. In data cleaning phase, additional steps are established to refine the database and consolidate the tweets of interest for the research. This allows to obtain an exploitation of the data explaining the results through word clouds, frequency diagrams, sentiment analysis and the ratios between the polarity of the tweets. The results enable inferring that, for the time interval in which the analysis was performed, the perception of the service is not good and so, there are opportunities for improvement for the three companies.

References

Montes Gomez, M. (2001). Minería de Texto: Un nuevo reto computacional. Minería de Texto: Un nuevo reto computacional. https://ccc.inaoep.mx/~mmontesg/publicaciones/2001/MineriaTexto-md01.pdf

Eito Brun, R., Senso, J. A. (2004). Minería Textual. El profesional de la información, 13 (1), 11-27. http://profesionaldelainformacion.com/contenidos/2004/enero/2.pdf

Bae, Y., Lee, H. (2012). Sentiment Analysis of Twitter Audiences: Measuring the Positive or Negative Influence of Popular Twitterers. Journal of the american society for information science and technology, 63 (12), 2522-2535. https://doi.org/10.1002/asi.22768

Bello-Orgaz, G., Menéndez, H., Okazaki, S., Camacho, D. (2014). Combining social-based data mining techniques to extract collective trendsfrom twitter. Malaysian Journal of Computer Science, 27 (2), 95-111. https://ejournal.um.edu.my/index.php/MJCS/article/view/6797

TIBCO Software Inc. (2022). ¿Qué son los datos estructurados? https://www.tibco.com/es/reference-center/what-is-structured-data

Rivadeneira Zambrano, F. J., Vélez Flores, B. F., Pinargote Mendoza, W. J., Rivadeneira Zambrano, R. A., Carvajal Rivadeneira, S. M. (2020). Aplicación de minería de texto para el análisis de sentimientos del servicio de telefonía móvil en el ecuador. Holos, 7, 1-16. http://dx.doi.org/10.15628/holos.2020.7994

Powell González, J. E. Carrillo Ruiz, M., Somodevilla García, M. J. (2021). Agrupamiento de poemas de autores suicidas y no suicidas usando K-means y enjambre de partículas. Revista de Investigación en Tecnologías de Información (RITI), 9 (18), 14-23. https://doi.org/10.36825/RITI.09.18.002

Salaberry, N. (2020). Análisis de contenido en Twitter y el aislamiento social obligatorio. Revista de investigación en modelos matemáticos aplicados a la gestión y la economía, 7 (1), 1-15. http://www.economicas.uba.ar/wp-content/uploads/2016/04/Salaberry-Natalia.pdf

Twitter. (2022). Información sobre las API de Twitter. https://help.twitter.com/es/rules-and-policies/twitter-api

Ngaboyamahina, M., Yi, S. (2019). The Impact of Sentiment Analysis on social media to Assess Customer Satisfaction: Case of Rwanda. IEEE 4th International Conference on Big Data Analytics, Suzhou, China. https://doi.org/10.1109/ICBDA.2019.8713212

Cortez Reyes, R. A. (2018). Extracción de conocimiento a partir de textos obtenidos de Twitter. Entorno, (65), 30-41. http://dx.doi.org/10.5377/entorno.v0i65.6048

Ali, T., Ahmad, I., Ur Rehman, A., Kamal, S. (2018). Understanding Customer Experiences through Social Media Analysis of Three Giants of Soft Drink Industry. 5th International Conference on Behavioral, Economic, and Socio-Cultural Computing (BESC), Kaohsiung, Taiwan. https://doi.org/10.1109/BESC.2018.8697304

Niño Martínez, N., Vaca, C., Ríos, B. P, Rey, L. J. (2020). Minería de textos y análisis de redes sociales en twitter. En M. A. Yandar Lobón, J. M. Moreno Ospina (Comp.) La industria 4.0 desde la perspectiva Organizacional (pp. 85-105). Artes y letras S.A.S. http://dx.doi.org/10.47212/industria4.0-6

Chen, W.-K., Riantama, D., Chen, L.-S. (2021). Using a Text Mining Approach to Hear Voices of Customers from social media toward the Fast-Food Restaurant Industry. Sustainability, 13 (1), 268-285. http://doi.org/10.3390/su13010268

Bernabe-Loraca, B., González-Velázquez, R., Carrillo-Canán, A., Granillo-Martinez, E. (2022). Sentiment Analysis and Multiple Means Comparison. Computación y Sistemas, 26 (1), 91-100. https://doi.org/10.13053/cys-26-1-4155

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. (1996). The KDD Process for Extracting Useful Knowledge from Volumes of Data. Communications of the ACM, 39 (11), 27-34. https://doi.org/10.1145/240455.240464

Valcárcel Asencios, V. (2004). Data mining y el descubrimiento del conocimiento. Industrial Data, 7 (2), 83-86. https://www.redalyc.org/articulo.oa?id=81670213

R Core Team. (2021). The R Project for Statistical Computing. https://www.R-project.org/

Jockers, M. (2020). Package ‘syuzhet’. https://cran.r- project.org/web/packages/syuzhet/syuzhet.pdf.

Published

2022-08-15

How to Cite

Gomez Rivera , C. E., Conti, D., Jaramillo Yepes , J. G., & Ospina Becerra, V. E. (2022). Evaluation of the perception of public services in Colombia through Text Mining using Twitter. Revista De Investigación En Tecnologías De La Información, 10(22), 49–63. https://doi.org/10.36825/RITI.10.22.004