Challenges in urban environmental data visualization techniques from an adaptive perspective: a systematic review
DOI:
https://doi.org/10.36825/RITI.13.31.006Keywords:
Data Visualization, Adaptability, Data Visualization Tools, Environmental IndicatorsAbstract
Data visualization faces the challenge of transforming into a dynamic and adaptable component to overcome its static limitations, responding to changing contexts and specific user needs. This systematic review aims to analyze how data visualization techniques have advanced toward more dynamic and flexible approaches. Tools, methods, and frameworks were identified that integrate the concept of adaptability as a response to the lack of flexibility of these techniques. As a result of this review, 26 papers were identified that address the incorporation of the concept of adaptability into interaction and customization based on the user's context, with the aim of optimizing communication through visual representations. Therefore, the need to transform how data is displayed is highlighted, moving from a static representation to a dynamic and adaptable tool, capable of responding to changing contexts and user needs.
References
Kitchenham, B. (2004). Procedures for Performing Systematic Reviews. Keele University. https://www.inf.ufsc.br/~aldo.vw/kitchenham.pdf
Tomkins, A., Lange, E. (2023). Planning and Designing Natural and Urban Environments with an Adaptive Visualization Framework: The Case of Pazhou Island, Guangzhou, Pearl River Delta. Land, 12 (2), 1-17. https://doi.org/10.3390/land12020377
Feng, Z., Zhu, F., Wang, H., Hao, J., Yang, S.-H., Zeng, W., Qu, H. (2024). HoLens: A visual analytics design for higher-order movement modeling and visualization. Computational Visual Media, 10 (6), 1079–1100. https://doi.org/10.1007/s41095-023-0392-y
Steinlechner, H., Rainer, B., Schwärzler, M., Haaser, G., Szabo, A., Maierhofer, S., Wimmer, M. (2019). Adaptive pointcloud segmentation for assisted interactions. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. Montreal, Quebec, Canada. https://doi.org/10.1145/3306131.3317023
Tabiongan, R. C., Tanseco, L. A., Carcellar, C. J. B., Chui, Y. S., Cortel, J. R., Llema, S. B. R. (2024). Project TANAW: 3D-Printed Urban Model with Geohazard Simulations Using Virtual Environment and AR Projection Mapping. Mindanao Journal of Science and Technology, 22 (S1), 211–234. https://doi.org/10.61310/mjst.v22iS1.2218
Ge, C., Qin, S. (2025). Urban flooding digital twin system framework. Systems Science and Control Engineering, 13 (1), 1-24. https://doi.org/10.1080/21642583.2025.2460432
Jarrin, F., Koga, Y., Thomas, D. (2025). VR and computer vision based facade complexity analysis for building design. Journal of Asian Architecture and Building Engineering, 1-24. https://doi.org/10.1080/13467581.2025.2458791
Roudbari, N. S., Punekar, S. R., Patterson, Z., Eicker, U., Poullis, C. (2024). From data to action in flood forecasting leveraging graph neural networks and digital twin visualization. Scientific Reports, 14 (1), 1-15. https://doi.org/10.1038/s41598-024-68857-y
Behrens, H. W., Candan, K. S., Chen, X., Garg, Y., Li, M.-L., Li, X., Liu, S., Sapino, M. L., Shadab, M., Turner, D., Vijayakumaren, M. (2021). DataStorm: Coupled, Continuous Simulations for Complex Urban Environments. ACM/IMS Trans. Data Science, 2 (3), 19:1-19:37. https://doi.org/10.1145/3447572
Menezes, J., Hemachandra, N., Isidro, K. (2024). Role of big data analytics and hyperspectral imaging in waste management for circular economy. Discover Sustainability, 5 (1), 1-11. https://doi.org/10.1007/s43621-024-00483-0
Jiang, Y., Yuan, Y., Han, S. Y. (2024). An entropy-based measurement for understanding origin-destination trip distributions: A case study of New York City taxis. Big Earth Data, 8 (4), 673–702. https://doi.org/10.1080/20964471.2024.2363548
van Renswouw, L., Bogers, S., Lallemand, C., van Wesemael, P., Vos, S. (2024). Changing Perspective on Data in Designing for Active Environments. ACM Designing Interactive Systems Conference. Copenhagen, Denmark. https://doi.org/10.1145/3643834.3661635
Zhang, Z., Zhang, M., Song, X., Li, Z. (2024). Image-based machine learning and cluster analysis for urban road network: Employing Orange for codeless visual programming. Geo-spatial Information Science, 28 (3), 1298–1315. https://doi.org/10.1080/10095020.2024.2377212
Xue, H., Ma, Q., Ge, X. (2025). Spatiotemporal dynamics and driving factors of energy-related carbon emissions in the Yangtze River Delta region based on nighttime light data. Scientific Reports, 15 (1), 1-16. https://doi.org/10.1038/s41598-025-87899-4
Almutairi, A., Davies, N., Mikusz, M., Langheinrich, M., Clinch, S. (2020). Designing for conflict: A design space for multi-viewer support in future display networks. 9TH ACM International Symposium on Pervasive Displays. Manchester United Kingdom. https://doi.org/10.1145/3393712.3395336
He, Y., Ali, A. B. M., Aminian, S. A., Sharma, K., Dixit, S., Sobti, S., Ali, R., Ahemedei, M., Rajab, H., Mazinan, M. A. Z. (2025). Enhancing Intelligent HVAC Optimization with Graph Attention Networks and Stacking Ensemble Learning: A Recommender System Approach in Shenzhen Qianhai Smart Community. Scientific Reports, 15(1), 5119. https://doi.org/10.1038/s41598-025-89776-6
Rapp, A., Cena, F., Tirassa, M., Boella, G., Calafiore, A., Keller, R. (2017). Tracking personal movements in urban environments: Personalized maps for people with autism spectrum disorder. ACM International Joint Conference on Pervasive and Ubiquitous Computing and ACM International Symposium on Wearable Computers. Maui, Hawaii. https://doi.org/10.1145/3123024.3125507
Weng, D., Zhu, H., Bao, J., Zheng, Y., Wu, Y. (2018). HomeFinder Revisited: Finding Ideal Homes with Reachability-Centric Multi-Criteria Decision Making. CHI Conference on Human Factors in Computing Systems. Montreal QC, Canada. https://doi.org/10.1145/3173574.3173821
Guo, J., Lv, Z. (2022). Application of Digital Twins in multiple fields. Multimedia Tools and Applications, 81, 26941–26967. https://doi.org/10.1007/s11042-022-12536-5
Sánchez-Vaquerizo, J. A. (2024). Urban Digital Twins and metaverses towards city multiplicities: Uniting or dividing urban experiences? Ethics and Information Technology, 27, 1-31. https://doi.org/10.1007/s10676-024-09812-3
Salama, A. M., Patil, M. P. (2024). A mobile application tool for co-assessing urban open spaces – a test case of the Grey’s Monument, Newcastle, UK. Journal of Urban Design, 30 (4), 1–27. https://doi.org/10.1080/13574809.2024.2363818
Calleo, Y., Giuffrida, N., Pilla, F. (2024). Exploring hybrid models for identifying locations for active mobility pathways using real-time spatial Delphi and GANs. European Transport Research Review, 16 (61), 1-12. https://doi.org/10.1186/s12544-024-00685-7
Rodrigues, J. M. F., Martins, M., Sousa, N., Rosa, M. (2018). IoE Accessible Bus Stop: An initial concept. 8th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-Exclusion. Thessaloniki, Greece. https://doi.org/10.1145/3218585.3218659
Ye, X., Jamonnak, S., Zandt, S. V., Newman, G., Suermann, P. (2024). Developing campus digital twin using interactive visual analytics approach. Frontiers of Urban and Rural Planning, 2 (9), 1-13. https://doi.org/10.1007/s44243-024-00033-2
Tahat, A., Aburub, R., Al-Zyoude, A., Talhi, C. (2018). A Smart City Environmental Monitoring Network and Analysis Relying on Big Data Techniques. International Conference on Software Engineering and Information Management. Casablanca, Morocco. https://doi.org/10.1145/3178461.3178464
Wintersberger, P., Nicklas, H., Martlbauer, T., Hammer, S., Riener, A. (2020). Explainable Automation: Personalized and Adaptive UIs to Foster Trust and Understanding of Driving Automation Systems. 12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. USA. https://doi.org/10.1145/3409120.3410659
Allan, M., Rajabifard, A., Foliente, G. (2023). Urban regeneration and placemaking: A Digital Twin enhanced performance-based framework for Melbourne’s Greenline Project? Australian Planner, 59 (4), 247–257. https://doi.org/10.1080/07293682.2024.2342793
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista de Investigación en Tecnologías de la Información

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Esta revista proporciona un acceso abierto a su contenido, basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global del conocimiento.
El texto publicado en la Revista de Investigación en Tecnologías de la Información (RITI) se distribuye bajo la licencia Creative Commons (CC BY-NC![]()
), que permite a terceros utilizar lo publicado citando a los autores del trabajo y a RITI, pero sin hacer uso del material con propósitos comerciales.
