Deep numeral models of air quality in the Tula metropolitan area, Hidalgo

Authors

DOI:

https://doi.org/10.36825/RITI.13.29.010

Keywords:

Air Quality, Deep Learning, Artificial Intelligence, Air Pollution, Environmental Monitoring

Abstract

In recent decades, increasing urbanization and industrial development have been a cornerstone of metropolitan development, representing an increase in the production and emission of greenhouse gases. This situation has led to air pollution and an unfavorable environmental situation that could affect ecosystems, the population, and life in general. Therefore, preventive strategies are required. Therefore, two artificial intelligence models were developed to predict air quality in the Tula Metropolitan Area (TMA) using classification and regression algorithms with deep learning neural networks. The CRISP-DM methodology was applied, considering the TMA as the producer of 90% of pollution in Hidalgo. Data understanding and preparation were performed prior to modeling and validating each model. Applying evaluation metrics resulted in an r2 of .99, a loss of 0.088 for the regression model, a .93 accuracy for the classification model, a precision of .88, recall of .79 and F1-score of .81 Both models were able to represent the air quality phenomenon and predict it efficiently.

References

World Health Organization: WHO. (2023). Cambio climático. https://www.who.int/es/news-room/fact-sheets/detail/climate-change-and-health

Benito Lozano, M., Rodríguez González, S. (2023, 16 noviembre). La imperiosa necesidad de programar la asistencia a urgencias, atendiendo al cambio climático y las crisis de calidad del aire. Revista Española de Urgencias y Emergencias, 2, 194-197. https://digital.csic.es/handle/10261/339047

Li, X., Peng, L., Hu, Y., Shao, J., Chi, T. (2016). Deep learning architecture for air quality predictions. Environmental Science and Pollution Research, 23, 22408–22417. https://doi.org/10.1007/s11356-016-7812-9

South China Morning Post. (2021). Air pollution kills 7 million a year, says WHO as it tightens guidelines. https://www.scmp.com/news/world/europe/article/3149735/air-pollution-kills-7-million-year-says-who-it-tightens

Wang, J., Li, J., Wang, X., Wang, J., Huang, M. (2020). Air quality prediction using CT-LSTM. Neural Computing And Applications, 33 (10), 4779-4792. https://doi.org/10.1007/s00521-020-05535-w

Chen, H., Guan, M., Li, H. (2021). Air Quality Prediction Based on Integrated Dual LSTM Model. IEEE Access, 9, 93285-93297. https://doi.org/10.1109/ACCESS.2021.3093430

Zou, X., Zhao, J., Zhao, D., Sun, B., He, Y., Fuentes, S. (2021). Air Quality Prediction Based on a Spatiotemporal Attention Mechanism. Mobile Information Systems, 2021 (1), 1-12. https://doi.org/10.1155/2021/6630944

Hamami, F., Dahlan, I. A. (2022). Air Quality Classification in Urban Environment using Machine Learning Approach. IOP Conference Series Earth and Environmental Science. https://doi.org/10.1088/1755-1315/986/1/012004

Chakma, A., Vizena, B., Cao, T., Lin, J., Zhang, J. (2017). Image-based air quality analysis using deep convolutional neural network. IEEE International Conference on Image Processing (ICIP). Beijing, China. http://doi.org/10.1109/ICIP.2017.8297023

Ruiz Muñoz, G. F., Vasco Delgado, J. C. (2025). Integración de las tecnologías de la información y la comunicación (TIC) e inteligencia artificial (IA) en la formación docente. Revista de Investigación en Tecnologías de la Información, 13 (29), 60-70. https://doi.org/10.36825/RITI.13.29.006

Zhang, M., Wu, D., Xue, R. (2021). Hourly prediction of PM2.5 concentration in Beijing based on Bi-LSTM neural network. Multimedia Tools Applications, 80, 24455–24468. https://doi.org/10.1007/s11042-021-10852-w

Qiu, W., Zhou, Y., He, H., Wang, B., Mu, G., Zhou, M., Ma., J., Zhang, Z., Cao, L., Xiao, L., Yuan, J., Chen, W. (2021). Short-term effects of air pollution on liver function among urban adults in China. Atmospheric Environment, 245. https://doi.org/10.1016/j.atmosenv.2020.118011

Zhao, F., Liang, Z., Zhang, Q., Seng, D., Chen, X. (2021). Research on PM2.5 Spatiotemporal Forecasting Model Based on LSTM Neural Network. Computational Intelligence and Neuroscience, 2021 (1), 1-10. https://doi.org/10.1155/2021/1616806

Wang, J., Li, X., Jin, L., Li, J., Sun, Q., Wang, H. (2022). An air quality index prediction model based on CNN-ILSTM. Scientific Reports, 12 (8373), 1-16. https://doi.org/10.1038/s41598-022-12355-6

Han, Y., Zhang, Q., Li, V. O. K., Lam, J. C. K. (2021). Deep-AIR: A Hybrid CNN-LSTM Framework for Air Quality Modeling in Metropolitan Cities. arXiv preprint. https://arxiv.org/abs/2103.14587

Zhang, Q., Lam, J. C. K., Li, V. O. K., Han, Y. (2020). Deep-AIR: A Hybrid CNN-LSTM Framework for Fine-Grained Air Pollution Forecast. arXiv preprint. https://arxiv.org/abs/2001.11957

Tiwari, A., Gupta, R., Chandra, R. (2021). Delhi air quality prediction using LSTM deep learning models with a focus on COVID-19 lockdown. arXiv preprint. https://arxiv.org/abs/2102.10551

Sarmiento Sánchez, C. A. (2024). Predicción de Contaminantes Atmosféricos en Bogotá utilizando Redes LSTM. Ingenio Tecnológico. Revista de Ingeniería, 6 (E051), 1-26. https://ingenio.frlp.utn.edu.ar/index.php/ingenio/article/view/108

Mengara Mengara, A. G., Park, E., Jang, J., Yoo, Y. (2022). Attention-Based Distributed Deep Learning Model for Air Quality Forecasting. Sustainability, 14 (6), 1-34. https://doi.org/10.3390/su14063269

Buestán Andrade, P. A., Carrión Zamora, P. E., Chamba Lara, A. E., Pazmiño Piedra, J. P. (2025). A comprehensive evaluation of ai techniques for air quality index prediction: RNNs and transformers. Ingenius, (33), 60-75. https://doi.org/10.17163/ings.n33.2025.06

Zaini, N. A., Ean, L. W., Ahmed, A. N., Malek, M. A. (2022). A systematic literature review of deep learning neural network for time series air quality forecasting. Environmental Science and Pollution Research, 29 (4), 4958-4990. https://doi.org/10.1007/s11356-021-17442-1

Abirami, S., Chitra, P. (2021). Regional air quality forecasting using spatiotemporal deep learning. Journal of Cleaner Production, 283. https://doi.org/10.1016/j.jclepro.2020.125341

Khan, H., Tso, J., Nguyen, N., Kaushal, N., Malhotra, A., Rehman, N. (2024). Novel Approach for Predicting the Air Quality Index of Megacities through Attention-Enhanced Deep Multitask Spatiotemporal Learning. arXiv preprint. https://arxiv.org/abs/2407.11283

Méndez, M., Merayo, M. G., Núñez, M. (2023). Machine learning algorithms to forecast air quality: a survey. Artificial Intelligence Review, 56, 10031–10066. https://doi.org/10.1007/s10462-023-10424-4

Published

2025-05-12

How to Cite

Barrera Cervantes, L. F., & Moreno Gutierrez, S. S. (2025). Deep numeral models of air quality in the Tula metropolitan area, Hidalgo. Revista De Investigación En Tecnologías De La Información, 13(29), 109–124. https://doi.org/10.36825/RITI.13.29.010

Issue

Section

Artículos