Analysis of a platform to support the diagnosis of polycystic ovary syndrome

Authors

DOI:

https://doi.org/10.36825/RITI.12.27.008

Keywords:

Artificial Intelligence, Data Mining, Classification Techniques, Women's Health, Polycystic Ovary Syndrome

Abstract

Polycystic Ovary Syndrome (PCOS) is a common endocrine condition among women of reproductive age and its early diagnosis prevents long-term complications; however, this diagnosis presents difficulties due to the variability of symptoms, cultural taboos and the need for laboratory and imaging tests interpreted by specialists in Gynecology. On the other hand, Artificial Intelligence (AI) techniques have shown great potential to help in the early detection of different diseases. Currently, women in rural and semi-rural areas have little access to specialists and studies, so it is considered useful to have a health platform, which includes AI techniques, in mobile and web environments, that supports the detection of PCOS. This article shows the result of the systems analysis for the aforementioned platform, presenting the functional and non-functional requirements compiled with the help of health professionals in General Medicine and Gynecology.

References

Consejo Nacional de Población. (2022). Día Internacional de Acción por la Salud de las Mujeres. https://www.gob.mx/conapo/articulos/dia-internacional-de-accion-por-la-salud-de-las-mujeres-303826?idiom=es

Cámara de Diputados. (2017). Entre 6 y 10 por ciento de las mexicanas padece Síndrome del Ovario Poliquístico. http://www5.diputados.gob.mx/index.php/esl/Comunicacion/Boletines/2017/Julio/31/3888-Entre-6-y-10-por-ciento-de-las-mexicanas-padece-Sindrome-del-Ovario-Poliquistico

Corona Vázquez, T., Medina Mora, M. E., Ostrosky Wegman, P., Sarti Gutiérrez, E. J., Uribe Zúñiga, P. (2014). La mujer y la salud en México. Intersistemas S.A de C.V.

Mayo Clinic. (2023). Síndrome de ovario poliquístico. https://www.mayoclinic.org/es/diseases-conditions/pcos/symptoms-causes/syc-20353439

Teede, H., Tay, C. T., Laven, J. S. E., Dokras, A., Moran, L. J., Piltonen, T. (2023). International evidence-based guideline for the assessment and management of Polycystic Ovary Syndrome 2023. Monash University. https://doi.org/10.26180/24003834.V1

Vanhauwaert, P. S. (2021). Síndrome de ovario poliquístico e infertilidad. Revista Médica Clínica Las Condes, 32 (2), 166–172. https://doi.org/10.1016/j.rmclc.2020.11.005

Food and Travel. (2020). Apps para el cuidado femenino. https://foodandtravel.mx/apps-para-el-cuidado-femenino/.

Instituto Nacional de Estadística y Geografía. (2018). Encuesta Nacional de la Dinámica Demográfica (ENADID). https://www.inegi.org.mx/programas/enadid/2018/

MedlinePlus. (2022). Salud de las mujeres. https://medlineplus.gov/spanish/womenshealth.html

Concha, F., Sir, T., Recabarren, S. E., Pérez, F. (2017). Epigenética del síndrome de ovario poliquístico. Revista médica de Chile, 145 (7), 907–915. https://doi.org/10.4067/s0034-98872017000700907

Hamet, P., Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism, 69, S36–S40. https://doi.org/10.1016/j.metabol.2017.01.011

Buulolo, E., Kom, S., Kom, M. (2020). Data Mining Untuk Perguruan Tinggi. Deepublish.

Kantardzic, M. (2019). Data Mining: Concepts, Models, Methods, and Algorithms (3ra Ed.). Wiley-IEEE Press.

Cognizant. (2024). Plataforma digital. https://www.cognizant.com/es/es/glossary/digital-platform

GCFGlobal. (2024). Informática Básica: ¿Qué es una aplicación móvil? https://edu.gcfglobal.org/es/informatica-basica/que-es-una-aplicacion-movil/1/

Bharati, S., Podder, P., Hossain Mondal, M. R. (2020). Diagnosis of Polycystic Ovary Syndrome Using Machine Learning Algorithms. IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh. https://doi.org/10.1109/TENSYMP50017.2020.9230932

Elmannai, H., El-Rashidy, N., Mashal, I., Alohali, M. A., Farag, S., El-Sappagh, S., Saleh, H. (2023). Polycystic Ovary Syndrome Detection Machine Learning Model Based on Optimized Feature Selection and Explainable Artificial Intelligence. Diagnostics, 13 (8), 1-21. https://doi.org/10.3390/diagnostics13081506

Ramamoorthy, S., R., V., Sivasubramaniam, R. (2019). Monitoring the growth of Polycystic Ovary Syndrome using Mono-modal Image Registration Technique. ACM India Joint International Conference on Data Science and Management of Data, Kolkata, India. https://doi.org/10.1145/3297001.3297024

Fox, S. E., Menking, A., Eschler, J., Backonja, U. (2020). Multiples Over Models. ACM Transactions on Computer-Human Interaction, 27 (4), 1–24. https://doi.org/10.1145/3397178

Published

2024-10-25

How to Cite

Bozziere Solís, K., Olivares Zepahua, B. A., Sánchez Morales, L. N., Ruiz Martínez, M., & Sánchez Cervantes, J. L. (2024). Analysis of a platform to support the diagnosis of polycystic ovary syndrome . Revista De Investigación En Tecnologías De La Información, 12(27 Especial), 67–80. https://doi.org/10.36825/RITI.12.27.008