Implementation of multitasking approach on a minicomputer for the control and monitoring of an industrial stepper motor
DOI:
https://doi.org/10.36825/RITI.12.27.002Keywords:
Multitasking, Minicomputer, Stepper Motor, Control, MonitoringAbstract
This paper presents the implementation of the multitasking approach on a Raspberry Pi single board minicomputer, with experimental results, of the control and monitoring of an industrial type Nema 34 stepper motor through a user interface that allows the configuration of the control operation and data visualization to interact with the physical devices. One of the tasks consists of generating a pulse width modulation that is sent to the DQ860HA driver to rotate the stepper motor considering 400 pulses per revolution, while the second task simultaneously counts the number of pulses produced by an encoder with a resolution of 100 pulses per revolution, which is coupled to the motor shaft. The use of low-cost computer equipment and open-source software makes the presented development can be considered as a frugal technology application for the control and monitoring of an industrial system, with experimental results that validate the correct operation of two tasks that must be executed simultaneously.
References
Khairudin, M., Asnawi, R., Shah, A. (2020). The characteristics of TB6600 motor driver in producing optimal movement for the Nema23 stepper motor on CNC machine. Telkomnika, 18 (1), 343-350. http://doi.org/10.12928/telkomnika.v18i1.12781
Fukumoto, H., Yamaguchi, T., Ishibashi, M., Furukawa, T. (2020). Developing a remote laboratory system of stepper motor for learning support. IEEE Transactions on Education, 64 (3), 292-298. http://doi.org/10.1109/TE.2020.3042595
Yılmazlar, E., Kuşçu, H., Erdemir, V., Güllü, A. (2018). Design Of Stepper Motor Control Interface With Embedded Systems. International Journal of Engineering Research and Development, 14 (6), 17-22.
Dominik, K., Kunović, I., Matić, J., Sovic Krzic, A. (2023). Ball Detection Using Deep Learning Implemented on an Educational Robot Based on Raspberry Pi. Sensors, 23 (8), 1-21. https://doi.org/10.3390/s23084071
Karahan, O., Hökelek, H. (2020). Mobile Robot Position Controlling System Based On IoT Through Raspberry Pi, Journal of Intelligent Systems: Theory and Applications, 3 (2), 25-30. https://doi.org/10.38016/jista.652908
Habib, M., Nagata, F., Watanabe, K. (2021). Mechatronics: Experiential learning and the stimulation of thinking skills. Education Sciences, 11(2), 1-22. https://doi.org/10.3390/educsci11020046
Chang, T., Wang, C., Hsu, C. (2024). Development of a real-time and multitasking system for long-term monitoring of aqueous metallic elements using plasma spectroscopy. Talanta, 271, 1-9. https://doi.org/10.1016/j.talanta.2024.125688
Hosny, K., Salah, A., Magdi, A. (2023). Parallel image processing applications using Raspberry Pi. In K.M. Hosny, A. Salah (Ed.) Recent Advances in Computer Vision Applications Using Parallel Processing (107-119). Springer. https://doi.org/10.1007/978-3-031-18735-3_6
Ibrahim, D. (2020). ARM-Based Microcontroller Multitasking Projects: Using the FreeRTOS Multitasking Kernel. Newnes.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista de Investigación en Tecnologías de la Información
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Esta revista proporciona un acceso abierto a su contenido, basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global del conocimiento.
El texto publicado en la Revista de Investigación en Tecnologías de la Información (RITI) se distribuye bajo la licencia Creative Commons (CC BY-NC), que permite a terceros utilizar lo publicado citando a los autores del trabajo y a RITI, pero sin hacer uso del material con propósitos comerciales.