Data science technique for forecasting natural gas consumption in the steel industry

Authors

DOI:

https://doi.org/10.36825/RITI.12.26.007

Keywords:

Data Science, Multiple Linear Regression, Forecasting, Natural Gas, Steel Industry

Abstract

Efficient scheduling of natural gas energy resources within the steel industry faces many challenges, as this sector does not have the necessary measures and tools to support its efficient management. In this study, a forecasting approach to natural gas consumption is proposed using the predictive technique of multiple linear regression. For the development of the proposed model, the main variables related to natural gas consumption that will make up the predictive model are established. The evaluation of the model was carried out using data from a steel company in Mexico. The results of mean absolute percentage error, root mean square error and mean absolute deviation of RLM models (MAPE: 10.23%, RMSE: 20492.32, DAM: 20009.03) vs. traditional method (MAPE: 34.05%, RMSE:93055.92, DAM: 65170.91), reflect that the proposed models significantly improve natural gas resource management, providing substantial improvement in natural gas consumption volume estimates for proper energy scheduling.

References

Viteri Rade, L. Y., Franco Villon, M. N. (2022). El desarrollo organizacional a través del talento humano. E-IDEA Journal of Business Sciences, 4 (17), 30-44. https://doi.org/10.53734/eidea.vol4.id233

Hu, Z., He, D., Feng, K., Liu, P., Jia, Y. (2019). Optimal Design Model of the Energy Systems in Iron and Steel Enterprises. Applied Sciences, 9 (22), 2-9. https://doi.org/10.3390/app9224778

Wang, Y., Wen, Z., Yao, J., Doh Dinga, C. (2020). Multi-objective optimization of synergic energy conservation and CO2 emission reduction in China’s iron and steel industry under uncertainty. Renewable and Sustainable Energy Reviews, 134, 1-13. https://doi.org/10.1016/j.rser.2020.110128

Yuan, Y., Na, H., Chen, C., Qiu, Z., Sun, J., Zhang, L., Du, T., Yang, Y. (2024). Status, challenges, and prospects of energy efficiency improvement methods in steel production: A multi-perspective review. Energy, 304. https://doi.org/10.1016/j.energy.2024.132047

Gao, C., Gao, W., Song, K., Na, H., Tian, F., Zhang, S. (2019). Comprehensive evaluation on energy-water saving effects in iron and steel industry. Science of the Total Environment, 670, 346-360. https://doi.org/10.1016/j.scitotenv.2019.03.101

Wang, X., Zhang, T., Luo, S., Abedin, M. Z. (2023). Pathways to improve energy efficiency under carbon emission constraints in iron and steel industry: Using EBM, NCA and QCA approaches. Journal of Environmental Management, 348. https://doi.org/10.1016/j.jenvman.2023.119206

Sun, W., Wang, Q., Zhou, Y., Wu, J. (2020). Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives. Applied Energy, 268, 1- 15. https://doi.org/10.1016/j.apenergy.2020.114946

Nenchev, B., Panwisawas, C., Yang, X., Fu, J., Dong, Z., Tao, Q., Gebelin, J., Dunsmore, A., Dong, H., Li, M., Tao, B., Li, F., Ru, J., Wang, F (2022). Metallurgical Data Science for Steel Industry: A Case Study on Basic Oxygen Furnace. Steel research international, 93, 1-13. https://doi.org/10.1002/srin.202100813

Karthick, K., Dharmaprakash, R., Sathya, S. (2024). Predictive Modeling of Energy Consumption in the Steel Industry Using CatBoost Regression: A Data-Driven Approach for Sustainable Energy Management. International Journal of Robotics and Control Systems, 4 (1), 33-49. https://doi.org/10.31763/ijrcs.v4i1.1234

Rojas, J. C., Hasanbeigi, A., Sheinbaum, C., Price, L. (2017). Energy efficiency in the Mexican iron and steel industry from an international perspective. Journal of Cleaner Production, 158, 335-348. https://doi.org/10.1016/j.jclepro.2017.04.092

Wolniak, R., Saniuk, S., Grabowska, S., Gajdzik, B. (2020). Identification of Energy Efficiency Trends in the Context of the Development of Industry 4.0 Using the Polish Steel Sector as an Example. Energies, 13 (11), 2-16. http://dx.doi.org/10.3390/en13112867

Zhou, P., Xu, Z., Zhu, X., Zhao, J., Song, C., Shao, Z. (2024). Granulation-based long-term interval prediction considering spatial–temporal correlations for gas demand prediction in the steel industry. Expert Systems with Applications, 248. https://doi.org/10.1016/j.eswa.2024.123382

Wang, R. Q., Jiang, L., Wang, Y. D., Roskilly, A. P. (2020). Energy saving technologies and mass-thermal network optimization for decarbonized iron and steel industry: A review. Journal of Cleaner Production, 274, 1-28. https://doi.org/10.1016/j.jclepro.2020.122997

Norbert, R., Kim, J., Griffay, G. (2020). A system dynamics framework for the assessment of resource and energy efficiency in iron and steel plants. Journal of Cleaner Production, 276, 1-10. https://doi.org/10.1016/j.jclepro.2020.123663

Ahmad, I., Arif, M. S., Cheema, I. I., Thollander, P., Khan, M. A. (2020). Drivers and Barriers for Efficient Energy Management Practices in Energy-Intensive Industries: A Case-Study of Iron and Steel Sector. Sustainability, 12 (18), 1-16. https://doi.org/10.3390/su12187703

Karimi-Zare, A., Shakouri G, H., Kazemi, A., & Kim, E.-S. (2024). Aggregate production planning and energy supply management in steel industry with an onsite energy generation system: A multi-objective robust optimization model. International Journal of Production Economics, 269. https://doi.org/10.1016/j.ijpe.2024.109149

Tang, L., Meng, Y. (2021). Data analytics and optimization for smart industry. Frontiers of Engineering Management, 8, 157–171. https://doi.org/10.1007/s42524-020-0126-0

Díaz, D., Ocampo, O. (2022). Gas natural para la transición energética y competitividad de Mèxico. Instituto Mexicano para la Competitividad A. C. https://imco.org.mx/wp-content/uploads/2022/08/Gas-Natural-Competitivo-en-Mexico.pdf

Jin, F., Lv, Z., Li, M., Mou, L., Zhao, J., Wang, W. (2018). A Causal Model-Based Scheduling Approach for Coke Oven Gas System in Steel Industry. IFAC-PapersOnLine, 51 (21), 7-12. https://doi.org/10.1016/j.ifacol.2018.09.384

He, K., Wang, L. (2017). A review of energy use and energy-efficient technologies for the iron and steel industry. Renewable and Sustainable Energy Reviews, 70, 1022-1039. https://doi.org/10.1016/j.rser.2016.12.007

Hasan, M., Hoq, T., Thollander, P. (2018). Energy management practices in Bangladesh's iron and steel industries. Energy Strategy Reviews, 22, 230-236. https://doi.org/10.1016/j.esr.2018.09.002

Maaouane, M., Zouggar, S., Krajacic, G., Zahboune, H. (2021). Modelling industry energy demand using multiple linear regression analysis based on consumed quantity of goods. Energy, 225. https://doi.org/10.1016/j.energy.2021.120270

Soto-Bravo, F., González-Lutz, M. I. (2019). Análisis de métodos estadísticos para evaluar el desempeño de modelos de simulación en cultivos hortícolas. Agronomía Mesoamericana, 30 (2), 517-534. https://doi.org/10.15517/am.v30i2.33839

Izhar, I., Radiman, R., Wahyun, S. F. (2023). Investigating factors affecting employees’work productivity. Journal of Enterprise and Development (JED), 5 (Special-Issue-2), 1-18. https://journal.uinmataram.ac.id/index.php/jed/article/view/7982

Vilà Baños, R., Torrado Fonseca, M., Reguant Álvarez, M. (2019). Análisis de regresión lineal múltiple con SPSS: un ejemplo práctico. Revista d'Innovació i Recerca en Educació, 12 (2), 1-10. http://doi.org/10.1344/reire2019.12.222704

Alita, D., Putra, A. D., Darwis, D. (2021). Analysis of Classic assumption test and multiple linear regression coefficient test for employee structural office recommendation. Indonesian Journal of Computing and Cybernetics Systems, 15 (3), 295-306. https://doi.org/10.22146/ijccs.65586

Pisica, D., Dammers, R., Boersma, E., Volovici, V. (2022). Tenets of Good Practice in Regression Analysis. A Brief Tutorial. World Neurosurgery, 161, 230-239. https://doi.org/10.1016/j.wneu.2022.02.112

Levin, R., Rubin, D. (2004). Estadística para administración y economía (7ma. Ed.). Pearson Educación.

Mejía Vásquez, E. J., Gonzales Chávez, S. (2019). Predicción del consumo de energía eléctrica residencial de la Región Cajamarca mediante modelos Holt -Winters. Ingeniería Energética, XL (3), 181-191. https://www.redalyc.org/journal/3291/329160723002/html/

Robeson, S. M., Willmott, C. J. (2023). Decomposition of the mean absolute error (MAE) into systematic and unsystematic components. Plos one, 18 (2), 1-18. https://doi.org/10.1371/journal.pone.0279774

Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development, 15 (14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022

Voloh, B., Watson, M. R., Konig, S., Womelsdorf, T. (2020). MAD saccade: statistically robust saccade threshold estimation via the median absolute deviation. Journal of Eye Movement Research, 12 (8), 1-12. https://doi.org/10.16910%2Fjemr.12.8.3

Rodríguez Sánchez, A., Salmerón Gómez, R., García, C. (2019). The coefficient of determination in the ridge regression. Communications in Statistics - Simulation and Computation, 51 (1), 201-219. https://doi.org/10.1080/03610918.2019.1649421

Schober, P., Boer, C., Schwarte, L. A. (2018). Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia & Analgesia, 126 (5), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864

Vega Vilca, J. C., Guzman, J. (2011). Regresión PLS y PCA como solución al problema de multicolinealidad en regresión múltiple. Revista de Matemática Teoría y Aplicaciones, 18 (1), 9–20. https://www.redalyc.org/articulo.oa?id=45326927002

Published

2024-10-25

How to Cite

Castorena Peña, J. A., Domínguez Lugo, A. J., Cantú González , J. R., & Alba Cisneros , D. M. (2024). Data science technique for forecasting natural gas consumption in the steel industry . Revista De Investigación En Tecnologías De La Información, 12(26), 77–93. https://doi.org/10.36825/RITI.12.26.007

Most read articles by the same author(s)