SIMULATION IN NS3 OF THE PROBLEM SO CALLED SHARED NECK OF BOTTLE THAT APPEARS IN THE PROTOCOL MP-TCP

Authors

  • Christian Alexander Valdivieso Pinzón Departamento de Electrónica, Telecomunicaciones y Redes de Información, Escuela Politécnica Nacional
  • Carlos David Cajas Guijarro Departamento de Electrónica, Telecomunicaciones y Redes de Información, Escuela Politécnica Nacional
  • Raúl David Mejía Navarrete Departamento de Electrónica, Telecomunicaciones y Redes de Información, Escuela Politécnica Nacional
  • Iván Marcelo Bernal Carrillo Departamento de Electrónica, Telecomunicaciones y Redes de Información, Escuela Politécnica Nacional

DOI:

https://doi.org/10.36825/RITI.05.09.010

Keywords:

MP-TCP, Shared Bottleneck, NS3-DCE, Ndiffports, Throughput

Abstract

MP-TCP (MultiPath-TCP) is a protocol that allows the sending of data through multiple paths in devices that have several network interfaces. An MP-TCP connection is divided into several TCP connections called subflows, in this way the effective connection rate and the fault resistance can be increased. However, in a scenario where MP-TCP is used with a client and a server, each with a single network interface, you can have the created subflows follow the same path even if several are available; this generates the problem called shared bottleneck. The article describes the development of the C ++ code to simulate the shared bottleneck problem in the NS3 network simulator. The simulation is developed with the DCE (Direct Code Execution) infrastructure for NS3 in such a way that an existing implementation of MP-TCP installed in a Linux kernel can be used. With the developed implementation, tests are performed and the results obtained are presented and discussed, which makes it possible to complement the study and analysis of this problem that MP-TCP suffers from. Among the results, the estimation of the effective transfer rate obtained by varying the number of subflows and roads in scenarios in which the shared bottleneck problem occurs is highlighted.

References

Raiciu,C.; Paasch, C.; Barre, S. Ford, A. How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP. Presented as part of the 9th USENIX Symposium on Networked, 2012, pp 13-14.

Raiciu, C.; Barre, S.; Pluntke, C.; Greenhalgh, A.;Wischik, D.; Handley, M. Improving Datacenter Performance and Robustness with Multipath TCP, In Proceedings of the ACM SIGCOMM conference (SIGCOMM ’11), 2011.

Sandri, M.; Silva, A.; Rocha, L.; Verdi, F. On the Benefits of Using Multipath TCP and Openflow in Shared Bottlenecks, IEEE, 2015.

nsman, ns-3 Tutorial 3.14 version. URL: https://www.nsnam.org/docs/release/3.14/tutorial/ns-3 tutorial.pdf. (16.12.2016).

Ford, A.; Raiciu, C.; Handley, M.; Bonaventure, O. TCP Extensions for Multipath Operation with Multiple Addresses, IETF RFC-6824, 2013.

Méndez, S. Á. Análisis de protocolo MPTCP en plataformas Linux, Madrid, 2015. Universidad Carlos III de Madrid. Departamento de. Ingeniería Telemática, 2015. URL: http://e-archivo.uc3m.es/handle/10016/23646.

thehajime, github, thehajime, URL: https://github.com/direct-code-execution/ns-3-dce/blob/master/test/dce-mptcp-test.cc. (27.12.2016).

nsnam, ns-3 Manual, 22 6 2012. URL: https://www.nsnam.org/docs/release/3.14/manual/ns-3-manual.pdf. (11.10.2016).

nsnam, ns3 Model Library Release 3.14. URL: https://www.nsnam.org/docs/release/3.14/models/ns-3-model-library.pdf. (12.10.2016).

Lacage, M. ns-3 Direct Code Execution (DCE), URL: https://www.nsnam.org/docs/dce/release/1.9/manual/ns-3-dce-manual.pdf. (16.10.2016).

Published

2017-05-29

How to Cite

Valdivieso Pinzón, C. A., Cajas Guijarro, C. D., Mejía Navarrete, R. D., & Bernal Carrillo, I. M. (2017). SIMULATION IN NS3 OF THE PROBLEM SO CALLED SHARED NECK OF BOTTLE THAT APPEARS IN THE PROTOCOL MP-TCP. Revista De Investigación En Tecnologías De La Información, 5(9), 70–79. https://doi.org/10.36825/RITI.05.09.010

Issue

Section

Artículos