Analysis of the NOMA-OFDM technique in a multipath channel and using channel estimation
DOI:
https://doi.org/10.36825/RITI.10.21.002Keywords:
NOMA, OFDM, Channel Estimation, Multipath Channel, 5GAbstract
NOMA (Non-Orthogonal Multiple Access) is a non-orthogonal access technique that can increase spectral efficiency and is considered a candidate technology for 5G. NOMA-OFDM combines the non-orthogonal access of NOMA with OFDM, which is widely used due to several advantages such as its high spectral efficiency. Channel estimation is an essential process in a NOMA-OFDM system, so in this paper a channel estimation scheme with preamble for the downlink is proposed considering a multipath channel and the LS (Least Square) technique. The analysis of the results is performed based on graphs of BER (Bit Error Rate) vs Eb/N0 (Energy per bit to noise power spectral density ratio) of the simulation implemented in Matlab and shows that channel estimation is possible with the LS method with the advantage that it is a simple technique although it produces a degradation of approximately 3 dB in the BER compared to the ideal case of perfect estimation. In addition, the results show that the selection of the injection factor is very important for the performance of the users to be adequate.
References
Alonso, N. (2020). Tecnología 5G, Características, usos y posibles peligros. https://protecciondatos-lopd.com/empresas/tecnologia-5g/
Riazul Islam, S. M., Avazov, N., Dobre, O. A., Kwak, K. (2017). Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges. IEEE Communications Surveys Tutorials, 19 (2), 721-742. https://doi.org/10.1109/COMST.2016.2621116
Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., Higuch, K. (2013). Non-Orthogonal Multiple Access (NOMA) for Cellular Future Radio Access. IEEE 77th Vehicular Technology Conference (VTC Spring). Dresden, Germany. https://doi.org/10.1109/VTCSpring.2013.6692652
Higuchi, K., Benjebbour, K. H. (2015). Non-orthogonal Multiple Access (NOMA) with Successive Interference Cancellation for Future Radio Access. IEICE Transactions on Communications, E98-B (3), 403-414. https://doi.org/10.1587/transcom.E98.B.403
Angjo, J., Tuncer, M. M., Akertek, E., Alakoca, H., Başaran, M., Durak-Ata, L. (2020). On the Channel Estimation Performance of NOMA Systems: Experimental Implementation of Real-Time Downlink NOMA-OFDM. IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). Odessa, Ukraine. https://doi.org/10.1109/BlackSeaCom48709.2020.9234965
Balogun, M. B., Takawira, F., Oyerinde, O. O. (2019). Weighted Least Square Based Iterative Channel Estimation for Uplink NOMA-OFDM Systems. 13th International Conference on Signal Processing and Communication Systems (ICSPCS). Coast, QLD, Australia. https://doi.org/10.1109/ICSPCS47537.2019.9008698
Ghazi, H. S., Wesolowski, K. W. (2019). Improved Detection in Successive Interference Cancellation NOMA OFDM Receiver. IEEE Access, 7, 103325-103335. https://doi.org/10.1109/ACCESS.2019.2931809
Xie, Y., Teh, K. C., Kot, A. C. (2021). Deep Learning-Based Joint Detection for OFDM-NOMA Scheme. IEEE Communications Letters, 25 (8), 2609-2613. https://doi.org/10.1109/LCOMM.2021.3077878
Pandya, S., Wakchaure, M. A., Shankar, R. (2021). Analysis of NOMA-OFDM 5G wireless system using deep neural network. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 1-8. https://doi.org/10.1177%2F1548512921999108
Wang, P., Xiao, J., Ping, J. (2006). Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems. IEEE Vehicular Technology Magazine, 1 (3), 4-11. https://doi.org/10.1109/MVT.2006.307294
Ding, Z., Adachi, F., Poor, H. V. (2016). The Application of MIMO to Non-Orthogonal Multiple Access. IEEE Transactions on Wireless Communications, 15 (1), 537-552. https://doi.org/10.1109/TWC.2015.2475746
Cho, Y. S., Kim, J., Yang, W. Y., Kang, C. G. (2010). MIMO-OFDM Wireless communications with Matlab. John Wiley & Sons. https://doi.org/10.1002/9780470825631
Biguesh, M., Gershman, A. B. (2006). Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals. IEEE Transactions on Signal Processing, 54 (3), 884-893. https://doi.org/10.1109/TSP.2005.863008
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista de Investigación en Tecnologías de la Información
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Esta revista proporciona un acceso abierto a su contenido, basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global del conocimiento.
El texto publicado en la Revista de Investigación en Tecnologías de la Información (RITI) se distribuye bajo la licencia Creative Commons (CC BY-NC), que permite a terceros utilizar lo publicado citando a los autores del trabajo y a RITI, pero sin hacer uso del material con propósitos comerciales.