Similarity and evaluation metrics for collaborative based recommender systems
DOI:
https://doi.org/10.36825/RITI.07.14.019Keywords:
Recommender Systems, Collaborative Filtering, Similarity MetricsAbstract
Recommender Systems are smart systems that bring to the users a set of personalized suggestions from a specific type of items(objects). In order to do this, several techniques are used to collect the user’s characteristics
for, using data processing, to find a subset of items that could be relevant to him. The improvement of the
recommendation’s accuracy is crucial because offering relevant content (based on needs or likes) to the visitors of web sites, mainly commercial ones, is trending. This article shows a comparative analysis among different similarity and evaluation metrics proposed for collaborative-filtering based recommender systems; doing tests on commonly used datasets to determine its efficiency on production time.
References
Dietmar, J., Zanker, M., Felfernig, A., Friedrich, G. (2011). Recommender Systems. New York: Cambridge University Press.
Facebook. (2019). https://www.facebook.com
Twitter. (2019). https://twitter.com
Pinterest. (2019). https://www.pinterest.com.mx/
Amazon. (2019). https://www.amazon.com.mx
Ebay. (2019). https://www.ebay.es
Netflix. (2019). https://www.netflix.com/browse
YouTube. (2019). https://www.youtube.com/
Moya García, R. (2013). SVD aplicado a sistemas de recomendación basados en filtrado colaborativo (Tesis Master). Universidad Politécnica De Madrid, España.
Sarwar, B., Karypis, G., Konstan, J., Reidl, J. (2001). Item-based collaborative filtering recommendation algorithms. Presentado en el Tenth International Conference on World Wide Web - WWW, Hong Kong. doi: https://doi.org/10.1145/371920.372071
Gunawardana, A., Shani, G. (2009). A Survey of Accuracy Evaluation Metrics of Recommendation Tasks. Journal of Machine Learning Research, 10, 2935-2962. Recuperado de: https://dl.acm.org/citation.cfm?id=1755883
Owen S., Robin A. (2009). Mahout in Action. Greenwich: Manning Publications Publications Co.
Liu, H., Hu, Z., Mian, A., Tian, H., Zhu, X. (2014). A new user similarity model to improve the accuracy of collaborative filtering. Knowledge-Based Systems, 56, 156–166. doi: https://doi.org/10.1016/j.knosys.2013.11.006
Castellano, E. J., Martínez, L., Barranco, M., Pérez Cordón, L. G. (2007). Recomendación de perfiles académicos mediante algoritmos colaborativos basados en el expediente. Presentado en la Conferência IADIS Ibero-Americana WWW/Internet, Villa Real, Portugal. Recuperado de: https://sinbad2.ujaen.es/sites/default/files/publications/Castellano2007_IADIS.pdf
Rojas Castellanos, Y. (2014). Sistema de recomendación por filtrado colaborativo para el sistema de publicación de contenido multimedia—VideoWeb 1.0. International Journal of Innovation and Applied Studies, 6 (3), 326-334. Recuperado de: http://www.ijias.issr-journals.org/abstract.php?article=IJIAS-14-098-04
Del Pino, J., Salazar, G., Cedeño, V. (2011). Adaptación de un Recomendador de Filtro Colaborativo Basado en el Usuario para la Creación de un Recomendador de Materias de Pregrado Basado en el Historial Académico de los Estudiantes. Revista Tecnológica - ESPOL, 24 (2), 29-34. Recuperado de: http://www.rte.espol.edu.ec/index.php/tecnologica/article/view/85
Zeng, W., Zhu, Y.-X., Lü, L., Zhou, T. (2011). Negative ratings play a positive role in information filtering. Physica A: Statistical Mechanics and its Applications, 390 (23-24), 4486–4493. doi: https://doi.org/10.1016/j.physa.2011.07.005
Taghavi, M., Bentahar, J., Bakhtiyari, K., Hanachi, C. (2018). New Insights Towards Developing Recommender Systems. The Computer Journal,
(3), 319–348, doi: https://doi.org/10.1093/comjnl/bxx056
Papachristoudis, G. (2019). Popular evaluation metrics in recommender systems explained. Recuperado de: https://medium.com/qloo/popular-evaluation-metrics-in-recommender-systems-explained-324ff2fb427d
Pinto da Costa, J. F. (2011) Weighted Correlation. En: M. Lovric (eds), International Encyclopedia of Statistical Science. Springer-Verlag Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-04898-2_612
Ramírez Morales, C. A. (2018). Algoritmo SVD aplicado a los sistemas de recomendación en el comercio. Tecnología Investigación y Academia, 6 (1), 18-27. Recuperado de https://revistas.udistrital.edu.co/index.php/tia/article/view/11827
Sadegui Moghaddam, M. H., Mustapha, N., Mustapha, A., Sharef, N. S., Elahian, A. (2015). Rust metrics in recommender systems: a survey. Advanced Computational Intelligence: An International Journal, 2 (3), 1-12. doi: https://doi.org 10.5121/acii.2015.2301
Goldberg, K., Roeder , T., Gupta, D., Perkins, C. (2000). Eigentaste: A Constant Time Collaborative Filtering Algorithm. Information Retrieval, 4 (2), 133-151. doi: https://doi.org/10.1023/A:1011419012209
Graham, D. (2019). Limitations of Collaborative Recommender Systems. Recuperado de: https://towardsdatascience.com/limitations-of-collaborative-recommender-systems-9801036941b3
Papagelis, M., Plexousakis, D., Kutsuras, T. (2005). Alleviating the sparsity problem of collaborative. En: Herrmann P., Issarny V., Shiu S. (eds), Trust Management. iTrust 2005. Lecture Notes in Computer Science, vol 3477. Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/11429760_16
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Revista de Investigación en Tecnologías de la Información
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Esta revista proporciona un acceso abierto a su contenido, basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global del conocimiento.
El texto publicado en la Revista de Investigación en Tecnologías de la Información (RITI) se distribuye bajo la licencia Creative Commons (CC BY-NC), que permite a terceros utilizar lo publicado citando a los autores del trabajo y a RITI, pero sin hacer uso del material con propósitos comerciales.