Sistema IoT para el cuidado de plantas ornamentales
DOI:
https://doi.org/10.36825/RITI.10.22.002Palabras clave:
Internet de las Cosas, Tecnología SigFox, Cuidado de Plantas OrnamentalesResumen
El Internet de las Cosas (IoT) ha permitido conectar dispositivos heterogéneos para ofrecer nuevos servicios y aplicaciones a los usuarios utilizando información del entorno. El objetivo de este artículo es presentar un sistema IoT para monitorear continuamente los cambios en el contenido de humedad del suelo y la temperatura ambiente de las plantas ornamentales. Además, se implementó un sistema de riego para mantener la humedad del suelo de las plantas dentro de un intervalo de tiempo. El tiempo de activación de la bomba de agua constituye la variable estimada del sistema IoT automatizado que se propone, por lo que la metodología de investigación fue aplicada en la realización de pruebas y experimentaciones relacionadas con esta variable. El sistema de riego se puede activar desde una App desarrollada en Android, así mismo, se ha generado un sistema electrónico propuesto basado en Arduino y el microchip ESP8266-201, la comunicación entre el ESP8266 y Arduino, se logra mediante comandos AT. Como complemento se ha propuesto la tecnología SigFox para recolectar y almacenar los valores de medición de humedad del suelo de la planta en un servidor de base de datos. La propuesta presenta importantes resultados para determinar intervalos de tiempo y cantidad de agua a suministrar a las plantas de ornato.
doi: https://doi.org/10.36825/RITI.10.22.002
Citas
Chandakkar, P. S., Li, P., Ding, P. L. K., Li, B. (2017). Strategies for re-training a pruned neural network in an edge computing paradigm. IEEE International Conference on Edge Computing (EDGE). Honolulu, HI, USA. https://doi.org/10.1109/IEEE.EDGE.2017.45
Condry, M. W., Nelson, C. B. (2016). Using smart edge iot devices for safer, rapid response with industry iot control operations. Proceedings of the IEEE, 104 (5), 938–946. https://doi.org/10.1109/JPROC.2015.2513672
Liu, L. (2018). IoT and a sustainable city. Energy Procedia, 153, 342-346. https://doi.org/10.1016/j.egypro.2018.10.080
Orrie, O., Silva, B., Hancke, G. P. (2015). A wireless smart parking system. 41st Annual Conference of the IEEE Industrial Electronics Society. Yokohama, Japan. https://doi.org/10.1109/IECON.2015.7392741
Vimal, P. V., Shivaprakasha, K. S. (2017). IoT based greenhouse environment monitoring and controlling system using Arduino platform. International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). Kerala, India. https://doi.org/10.1109/ICICICT1.2017.8342795
Othman, M. F., Shazali, K. (2012). Wireless sensor network applications: A study in environment monitoring system. Procedia Engineering, 41, 1204–1210. https://doi.org/10.1016/j.proeng.2012.07.302
McRoberts, M. (2013). Beginning Arduino. Apress.
Azhar, F. C., Irawan, B., Saputra, R. E. (2017). Controlling and monitoring ornamental plants care remotely using android application. IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob). Bandung, Indonesia. https://doi.org/10.1109/APWiMob.2017.8283993
Thomsen, J. D., Sønderstrup-Andersen, H. K. H., Müller, R. (2011). People– plant relationships in an office workplace: perceived benefits for the workplace and employees. HortScience, 46 (5), 744–752. https://doi.org/10.21273/HORTSCI.46.5.744
Gómez Lopera, F. (2005). Las zonas verdes como factor de calidad de vida en las ciudades. Ciudad y Territorio Estudios Territoriales, 37 (144), 417-436. https://recyt.fecyt.es/index.php/CyTET/article/view/75554
Xaver, A., Zappa, L., Rab, G., Pfeil, I., Vreugdenhil, M., Hemment, D., Dorigo, W. A. (2020). Evaluating the suitability of the consumer low-cost Parrot Flower Power soil moisture sensor for scientific environmental applications. Geoscientific Instrumentation, Methods and Data Systems., 9, 117–139. https://doi.org/10.5194/gi-9-117-2020
Perez, M. S., Carrera, E. (2015). Time synchronization in Arduino-based wireless sensor networks. IEEE Latin America Transaction, 13 (2), 455-461. https://doi.org/10.1109/TLA.2015.7055564
Wu, T. H., Chang, C. H., Lin, Y. W., Van, L. D., Lin, Y. B. (2016). Intelligent plant care hydroponic box using IoTtalk. IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Commu- nications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). Chengdu, China. https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.94
González Cárdenas, J. O., Figueroa Millán, P. E., Amezcua Valdovinos, I., Benavides Delgado, R. (2022). Diseño arquitectural de una plataforma IoT para la monitorización ambiental aplicada en viveros de plantas de Ornato. 3C TIC: Cuadernos de desarrollo aplicados a las TIC, 11 (1), 223-249. https://dialnet.unirioja.es/servlet/articulo?codigo=8415585
Gómez, J. E., Castaño, S., Mercado, T., García, J., Fernández, A. (2018). Sistema de internet de las cosas (IoT) para el monitoreo de cultivos protegidos. Ingeniería e innovación, 5 (1), 24-31. http://dx.doi.org/10.21897/23460466.1101
Flores Gallegos, E. (2017). Sistema de Control Difuso para el Monitoreo de la Temperatura, la Humedad, el PH, y la Conductividad Eléctrica en Invernaderos de Plantas Ornamentales. [Tesis Maestría]. Tecnológico Nacional de México. https://dspace.colima.tecnm.mx/handle/123456789/721
Chanchí Golondrino, G. E., Ospina Alarcón, M. A., Campo Muñoz, W. Y. (2020). Sistema IoT para el seguimiento y análisis de la intensidad de luz en plantas de interiores. Research in Computing Science, 149 (11), 317-327.
Bhuvaneswari, T., Yao, J. T. H. (2014), Automated greenhouse. IEEE International Symposium on Robotics and Manufacturing Automation (ROMA). Kuala Lumpur, Malaysia. https://doi.org/10.1109/ROMA.2014.7295887
Grokhotkov, I. (2017). Esp8266 Arduino core documentation. https://buildmedia.readthedocs.org/media/pdf/arduino-esp8266/docs_to_readthedocs/arduino-esp8266.pdf
Santos, R., Santos, S. (2019). Ultimate Guide for Arduino Sensors/Modules. http://tecnologiax.altervista.org/wp-content/files/Ultimate_Guide_Arduino_Sensors_Modules.pdf
STMicroelectronics. (1993). L293b l293e push-pull four channel drivers. http://www.datasheet.es/PDF/69629/L293B-pdf.html
Components101. (2021). 16x2 LCD Module. https://components101.com/displays/16x2-lcd-pinout-datasheet
Soni, P., Suchdeo, K. (2012). Exploring the serial capabilities for 16x2 lcd interface. International Journal of Emerging Technology and Advanced Engineering, 2 (11), 109-112. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.414.4844&rep=rep1&type=pdf
Texas Instruments. (2020). LM317 3-Terminal Adjustable Regulator. https://www.ti.com/lit/ds/symlink/lm317.pdf?ts=1657254748901
Anagnostopoulos, G. G., Kalousis, A. (2019). A reproducible analysis of rssi fingerprinting for outdoor localization using SigFox: Preprocessing and hyperparameter tuning. International Conference on Indoor Positioning and Indoor Navigation (IPIN). Pisa, Italy. https://doi.org/10.1109/IPIN.2019.8911792
SigFox. (2019). Cobertura de SigFox. https://www.sigfox.com.py/cobertura
WND. (2019). Operador Sigfox para México. https://www.wndgroup.io/mexico
C. SIGFOX. (2019). ¿Qué es Sigfox? https://www.sigfox.com.py/que-es-sigfox
Mekki, K., Bajic, E., Chaxel, F., Meyer, F. (2019). A comparative study of lpwan technologies for large-scale iot deployment. ICT express, 5 (1), 1–7. https://doi.org/10.1016/j.icte.2017.12.005
Gayosso-Rodríguez, S., Borges-Gómez, L., Villanueva-Couoh, E., Estrada-Botello, M. A., Garruña-Hernández, R. (2016). Sustratos para producción de flores. Agrociencia, 50 (5), p.p. 617-631. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952016000500617
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Revista de Investigación en Tecnologías de la Información

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Esta revista proporciona un acceso abierto a su contenido, basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global del conocimiento.
El texto publicado en la Revista de Investigación en Tecnologías de la Información (RITI) se distribuye bajo la licencia Creative Commons (CC BY-NC), que permite a terceros utilizar lo publicado citando a los autores del trabajo y a RITI, pero sin hacer uso del material con propósitos comerciales.