Vibration measurement system for quality control in the company DavMotor Ltda

Authors

DOI:

https://doi.org/10.36825/RITI.10.21.009

Keywords:

ZigBee, Arduino, Automation, Quality, Industry 4.0

Abstract

Currently, the proper use of existing technologies applied to quality control adds value to production processes. Dav Motor Cia. Ltda. is an industry dedicated to the design, manufacture and assembly of bus bodies; which has as a fundamental part of its production process the quality control of its units, where vibration measurement is made based on a people’s perception. For this reason, this paper presents the development of an automatic and wireless method of vibration analysis to monitor the adjustment and sealing of windows, lids, warehouses, boards, doors and trunks of the bodies. Measurement dots were selected according to non-conformity found as well as final client complaints, who have requested warranty. This situation generates extra-costs because of coverage of factory failures to the company. The vibration analysis makes use of ZigBee technology, Arduino microcontroller and its compatible components for the reading, processing, display, and analysis of vibration data generating reliable quality control reports and adding value to the production process. Thus, greater synergy has been created between cyber-physical systems and industrial processes, promoting continuous improvement as well as greater client satisfaction.

References

Drath, R., Horch, A. (2014). Industrie 4.0: Hit or Hype? [Industry Forum]. IEEE Industrial Electronics Magazine, 8 (2), 56-58. https://doi.org/10.1109/MIE.2014.2312079

White, G. (2009). Introducción al Análisis de Vibraciones. Azima DLI. https://termogram.com/images/pdf/analisis-vibraciones/introduccion-al-analisis-de-vibraciones-azima-dli.pdf

Gualotuña Quishpe, E. P. (2016). Medición y análisis de vibraciones mecánicas en un bus de transporte de pasajeros y sus efectos en la salud y el confort mediante la norma ISO 2631 [Tesis de Maestría]. Escuela Politécnica Nacional, Ecuador. http://bibdigital.epn.edu.ec/handle/15000/16341

Olarte, W., Botero, M., Cañon, B. (2010). Análisis de vibraciones: una herramienta clave en el mantenimiento predictivo. Scientia et Technica, XVI (45), 219-222. https://www.redalyc.org/articulo.oa?id=84917249040

Alvarez Paniagua, J. E. (2019). Mantenimiento predictivo a través de un sistema de monitoreo de vibraciones a turbinas tipo francis (8MW) acorde a la Norma ISO 10816, en la central hidroeléctrica Santa Teresa [Tesis de Maestría]. Universidad de San Carlos de Guatemala. http://www.repositorio.usac.edu.gt/id/eprint/12161

García León, R. A., Flóres Solano, E., Pedroza, J. (2018). Diseño de un banco de pruebas para el análisis de vibraciones mecánicas. Revista Colombiana de Tecnologías de Avanzada (RCTA), 1 (33), 24-35. https://doi.org/10.24054/16927257.v33.n33.2019.82

Niño Moreno, L. A (2021). Modelo de adquisición de datos para el monitoreo de activos mantenibles a través de un sistema de información. Working Papers – ECBTI, 2 (2), 1-9. https://doi.org/10.22490/ECBTI.5571

Published

2022-08-16

How to Cite

Aragón Pilco, B. J., Villarreal Prado, J. F., & Hidalgo Oñate, Ángel. (2022). Vibration measurement system for quality control in the company DavMotor Ltda. Revista De Investigación En Tecnologías De La Información, 10(21 Especial), 100–109. https://doi.org/10.36825/RITI.10.21.009