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Resumen: La programacion eficiente de recursos energéticos de gas natural dentro de la industria sidertrgica se
encuentra ante muchos desafios, debido a que este sector no cuenta con las medidas y herramientas necesarias que
puedan apoyar su manejo eficiente. En este estudio, se propone un enfoque de pronostico de consumo de gas
natural mediante la técnica predictiva de regresion lineal multiple. Para el desarrollo del modelo propuesto, se
establecen las principales variables relacionadas con el consumo de gas natural que conformaran el modelo
predictivo. La evaluacion del modelo se llevo a cabo utilizando datos procedentes de una empresa acerera de
Meéxico. Los resultados del error porcentual absoluto medio, la raiz del error cuadratico medio y la desviacion
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absoluta media de los modelos de RLM (MAPE: 10.23%, RMSE: 20492.32, DAM: 20009.03) vs. método
tradicional (MAPE: 34.05%, RMSE:93055.92, DAM: 65170.91), reflejan que los modelos propuestos mejoran
significativamente la gestion de recursos de gas natural, proporcionado una mejora sustancial en las estimaciones
de volumen de consumo de gas natural para una planificacion adecuada de su programacion energética.

Palabras clave: Ciencia de Datos, Regresion Lineal Multiple, Pronostico, Gas Natural, Industria Siderurgica.

Abstract: Efficient scheduling of natural gas energy resources within the steel industry faces many challenges, as
this sector does not have the necessary measures and tools to support its efficient management. In this study, a
forecasting approach to natural gas consumption is proposed using the predictive technique of multiple linear
regression. For the development of the proposed model, the main variables related to natural gas consumption that
will make up the predictive model are established. The evaluation of the model was carried out using data from a
steel company in Mexico. The results of mean absolute percentage error, root mean square error and mean absolute
deviation of RLM models (MAPE: 10.23%, RMSE: 20492.32, DAM: 20009.03) vs. traditional method (MAPE:
34.05%, RMSE:93055.92, DAM: 65170.91), reflect that the proposed models significantly improve natural gas
resource management, providing substantial improvement in natural gas consumption volume estimates for proper
energy scheduling.

Keywords: Data Science, Multiple Linear Regression, Forecasting, Natural Gas, Steel Industry.

1. Introduccion

Las organizaciones a nivel mundial se enfrentan cada vez mas a un entorno empresarial dindmico y complejo, para
lo cual, deben de ser capaces de adaptarse de forma rapida y oportuna ante tales cambios [1]. Por este motivo, es
un desafio el gestionar los recursos energéticos dentro de la industria sidertrgica, debido a que este sector es uno
de los principales consumidores de energia en el mundo y no cuenta con las medidas y herramientas necesarias
que puedan apoyar su manejo eficiente [2], [3], [4].

Diferentes investigaciones han abordado el problema de la administracion de recursos energéticos desde
diversas perspectivas. Por una parte, proponen la utilizacién de recursos secundarios como gas de carbon, calor
residual y los gases derivados de los procesos siderurgicos como alternativas de fuentes de energia, con el fin de
mejorar la eficiencia energética [5]. Asimismo, también otros autores sostienen que mediante la implementacion
de una serie de politicas heterogéneas enfocadas a la eficiencia energética podrian optimizar el consumo de
energéticos [6].

Estudios recientes han demostrado que, con el rapido desarrollo de la informacion global, las acererias
modernas han tratado de equiparse con sistemas de planificacion de recursos empresariales (ERP) y sistema de
ejecucion de la manufactura (MES) para dar soporte a la buena gestion de recursos energéticos, sin embargo, estas
herramientas cumplen unicamente con los requisitos basicos de la transmision rapida y oportuna de informacion
de flujo de materiales utilizados en las empresas [7], dejando a un lado funcionalidades que den soporte a la
planificacion, programacion, monitoreo, control y proyeccion de consumo sobre las diferentes fuentes de energia
utilizadas en los procesos siderurgicos actuales [8], ocasionando con ello una ineficiente gestion de recursos
energéticos.

El mejorar la buena gestion y administracion energética en el sector siderurgico, también ha sido abordada
bajo el enfoque del uso de técnicas predictivas como herramientas de estimacion del consumo de energia, con las
cuales, puedan establecer de forma mas precisa la cantidad de electricidad utilizada por los distintos procesos
industriales. Al comprender y establecer la prediccion del consumo de energia, las empresas siderurgicas tienen a
su disposicion la oportunidad de mejorar sus estrategias de inversion y compra de energia, disminuir los costos de
consumo energético e incrementar la productividad de su produccion [9].

En México el sector siderurgico, ocup6 el primer lugar de consumo de energia con un 14.3% del consumo
industrial final, siendo el gas natural la principal fuente de energia utilizada [10]. Para las empresas acereras, la
buena gestion de recursos energéticos es clave, no solo para operar de manera eficiente cada uno de los procesos
industriales, sino para lograr una mayor optimizacion en el uso de ellos, la cual puede traducirse en ahorros
monetarios, productividad, aprovechamiento al maximo en los tiempos de produccion y soporte en la toma de
decisiones para su consumo [11].
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Al no contar con las suficientes herramientas o sistemas de gestion de recursos energéticos, la industria
siderurgica se enfrenta constantemente a problemas de cumplimento de objetivos, estimaciones imprecisas sobre
consumo de gas natural, pérdidas econdmicas y disminucion de eficiencia en sus procesos, convirtiéndose asi, en
una de las principales areas de interés a mejorar [12]. Por tal motivo la presente investigacion tiene como objetivo
la propuesta de un modelo matematico basado en regresion lineal multiple, que sirva como herramienta en el
proceso de asignacion y seleccion de gas natural, para mejorar la eficiencia de los recursos energéticos en la
industria siderurgica en México. Asimismo, los resultados ayudaran a eficientizar la planificacion, productividad
y supervision de los procesos hacia situaciones actuales.

2. Estado del arte

2.1. Panorama actual de la gestion de recursos energéticos en el sector siderurgico
La gestion de recursos energéticos hasta hace unas décadas no era un elemento crucial del esquema general de la
administracion de la industria acerera, hasta que el consumo de recursos no controlado, comenz6 a afectar los
costos de operacion dentro de las compaiiias. Actualmente, el sector siderurgico representa una de las industrias
con mayor consumo de recursos energéticos, provocando con ello, que este sector se encuentre en una busqueda
constante de herramientas tecnoldgicas, que apoyen una buena gestion para lograr ahorros significativos de
consumo [13], [14], [15]. Dentro de los principales objetivos de la gestion energética se encuentran: la utilizacion
adecuada de los recursos, la planificacion y operacion de la produccion de energia y sus unidades de consumo
[16]. Para aprovechar al maximo los recursos energéticos dentro de la industria siderurgica, los operadores de
programacion energética tienen que ajustar en tiempo real y oportuno las cantidades de consumo de sus diversos
procesos, para equilibrar y mejorar sus planes de operacion [17].

Dentro de las principales fuentes de energias mas utilizadas se encuentran el gas natural, el coque de carbon
y la electricidad. El gas natural es uno de los combustibles mas utilizados como fuente de combustion para uso
doméstico y uso industrial, particularmente en las industrias como la siderurgica, la metalurgica, la petroquimica,
etc. Entre el afio 2005 y los primeros nueve meses del 2021 el volumen requerido de gas natural creci6 en un
62.4% pasando de un consumo de 5 mil 89 millones de pies ctibicos diarios (MMpcd) a 8 mil 625 MMpcd, siendo
tres sectores los principales consumidores de este insumo, el cual estuvo dividido de la siguiente forma (Figura 1):
el sector eléctrico con un 64.7%; seguido del petrolero que represent6 el 22.2%; y, en tercer lugar, el sector
industrial con el 11.5% del total del gas natural demandado [18]. El resto del consumo de gas natural estuvo
dividido por los sectores: el residencial (1.0%), los servicios (0.5%) y el autotransporte (0.1%).

Residencial Servicios Autotransporte
1% 0.5% 0.1%

Figura 1. Demanda nacional de gas natural por sector 2020.

Para realizar la prediccion del consumo de gas natural dentro del sector siderurgico, se han utilizados diversos
métodos convencionales que van desde la experiencia de los operarios hasta modelos causales, siendo este ultimo
método, aplicado a la gestion de gas coque, el cual ha sido desarrollado bajo el enfoque de programacion lineal
(Figura 2), basado en modelos causales [19].
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Figura 2. Modelo causal para el sistema CO.

Por otro lado, también se han encontrado estudios enfocados a la eficiencia energética, pero desde perspectivas de
la utilizaciéon de recursos secundarios, los cuales son adquiridos o generados al interior de las compaiiias
siderurgicas, como los que se presentan a continuacion:

a) Hey Wang en [20] sostienen que una de las alternativas que tienen las industrias siderurgicas para
mejorar la eficiencia de los recursos energéticos, es la utilizacion de energias secundarias, tales como
el gas de carbdn, calor residual y gases derivados de los procesos, de tal manera que estos recursos
sean empleados como combustible en los procesos de produccion del acero. Asimismo, también
proponen una serie de sistemas industriales transversales (sistemas de caldera, energia distribuida /
calor y energia combinados, etc.) que podrian apoyar la buena gestion de energéticos.

b) Para Gao ef al. en [5] la forma de lograr mejoras significativas en la gestion energética es con la
aplicacion de diversas tecnologias que incluyen el uso de inyeccion de carbéon en los hornos,
recuperacion de calor residual sinterizado y utilizacion de deshumidificadores industriales de alto
rendimiento, entre otras medidas.

c) Por otro lado, en [7] Sun et al. ponen de manifiesto también una revision exhaustiva de diversas
tecnologias que pudieran apoyar en la optimizacion de la gestion energética. Dentro de las
tecnologias mencionadas se encuentran aquellas que tienen que ver con el almacenamiento de
energia, inyeccion de carbon pulverizado, utilizacion de calor residual y flujo de gas de los procesos
industriales. Ademads, también proponen la introduccion de modelos de prondstico de flujos de
materiales y energia para mejorar la eficiencia energética.

d) Dentro de las tecnologias mencionadas por Hasan, Hoq y Thollander en [21] para mejorar la
eficiencia energética se encuentran aquellas praxis que tienen que ver con la utilizacion de gases de
escape y recuperacion de calor de los procesos sidertirgicos, asi como el empleo de inyeccion de
carbon como uno de los combustibles en los procesos de fabricacion.

3. Materiales y métodos

En base a los datos obtenidos del proceso en sitio, se selecciono las técnicas de regresion para la generacion de los
modelos de prediccion, siendo la Regresion Lineal Multiple (RLM), la que mejor se adapta a los objetivos del
presente estudio, debido a que este método estadistico permite examinar la relacion y prediccion de una variable
respuesta cuantitativa en funcion de dos o mas variables predictoras, Asimismo, permite identificar y clasificar de
manera matematica qué variables explicativas son las que mayor impacto tienen sobre el fenomeno de estudio,
como interactlian las variables entre si y qué variables se pueden ignorar, entre otros aspectos. Y dada la naturaleza
del fendmeno de estudio donde se tiene una variable dependiente y diversas variables explicativas asociadas a su
comportamiento, se optd por tal técnica. Otro aspecto, el cual fue considerado para la seleccion de la técnica de
prediccion de RLM, es el numero de observaciones obtenidas del fendmeno de estudio, el cual se ajustaba de
forma apropiada para ser utilizado por este método. La metodologia desarrollada para la presente investigacion
tiene un enfoque cuantitativo de tipo no experimental- transeccional, la cual tiene como objetivo la generacion de
un modelo matematico basado en la técnica predictiva de regresion lineal multiple para estimar las unidades de
consumo del volumen de gas natural en la industria acerera.
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3.1. Descripcion del modelo de regresion lineal multiple

La técnica de regresion multiple hace referencia a la relacion de una variable dependiente con dos o més variables
independientes, donde las variables independientes pueden combinar variables cuantitativas y cualitativas. Para
denotar el nimero de variables independientes se suele usar p, tal como se muestra a continuacion en la estructura
del modelo de regresion lineal multiple [22], [23]:

Y = by + bxy + byx; + -+ byx, 4))

Donde 9 = Es la variable dependiente, que representa el valor estimado a partir de una muestra. Y
by, by, by, ..., b, son las estimaciones de los parametros By, By, B2, -, Bp-

El analisis de regresion lineal multiple, a diferencia del simple, se aproxima mas a situaciones de analisis real
puesto que los fendmenos hechos por definicion, son complejos y, en consecuencia, deben ser explicados en la
medida de lo posible por la serie de variables que directa e indirectamente participan en su concrecion [24].

La regresion lineal multiple posee seis supuestos claves que hay que considerar para realizar y desarrollar un
analisis preciso y no sesgado durante la aplicacion de la técnica [25], [26], [27]:

e Normalidad

e Ausencia de errores de medicion

e Relacion lineal

o Lamedia de los residuales debe de ser igual a 0

e  Multicolinealidad

e Homocedasticidad

3.1.1. Proceso de estimacion en la regresion multiple

Para realizar el proceso de regresion multiple, se inicia con el célculo de los parametros desconocidos
by, by, by, ..., by, los cuales son las estimaciones de By, By, Bz, ---, Bp- Una vez obtenidos los parametros se integran
al modelo de regresion lineal multiple tal como se muestra en la Figura 3 [28].

Modelo de regresion multiple Datos muestrales
Vv =B+ Bxy+ Prxy+ -+ ,B’pxp+e X1 Xy Xp y
Ecuacién de regresién multiple
E(y) = Bo+ Bxy + Poxy + -+ Bpxp
Bo, B1, B2, ---, Bp son parametros
desconocidos
A
v
bg, by, bs, ..., bp son las estimaciones de Calculo de la ecuacion de regresion
multiple estimada
BOVBIIﬁZI"'IBp <
9 =Dy +bxy +byx; + -+ byx,

by, by, by, ..., by, son estadisticos muestrales

Figura 3. Procesos de estimacion de parametros en RLM.

3.1.2. Medidas de exactitud para la evaluacion del modelo de regresion
Para evaluar el rendimiento de los modelos de regresion, se tienen unas series de medidas de exactitud entre las
cuales destacan las siguientes [29]:
e Raiz del error cuadratico medio (RMSE): Es una medida absoluta de ajuste que es utilizada como criterio
de prediccion dentro de lo modelos matematicos, la cual representa el promedio del cuadrado de la
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distancia entre el valor pronosticado y el valor real que se quiere estimar, tal como se muestra a
continuacion [30]:

1 ~
RMSE = n G ) 2

Donde cada y; corresponde a una observacion confiable (9;) y n es el total de observaciones de un
conjunto de valores.

e  Error porcentual medio absoluto (MAPE): Métrica que tiene como objetivo medir el grado de certeza con
que se realiza un valor estimado, midiéndose el tamafio del error, en términos porcentuales definiéndose
de la siguiente manera [31]:

MAPE = 22 x 37,

n

Xi—Xi

; ©))

Xi

e Desviacion absoluta media (MAD): Medida estadistica de error que representa el promedio de la distancia
entre cada par de puntos reales y ajustados en un conjunto de datos y esta dada por [32]:
n |xi_’?i|

=1|"x;

MAD = E ] )
n

Donde: valor real en el periodo x; ; X; es el valor de prediccion en el periodo i; y n es el numero total
de periodos temporales (numero de observaciones).

e Coeficiente de determinacion (r?): Medida estadistica para estimar el porcentaje de explicacion de la
variable dependiente a partir de una o mas variables independientes, y su expresion es la siguiente [33]:

2 _ 209 _ o E.Gi-Y)

re =
Z?:l(.VL_J_/) Z?:ﬂ}’t‘}_’)’ (5)

e Coeficiente de correlacion (r): Es el encargado de medir la intensidad de la relacion entre un conjunto
de variables independientes y una variable dependiente, de tal forma que se puedan identificar las
variables mas influyentes sobre la variable dependiente. Los valores en los que puede oscilar el
coeficiente de correlacion son entre 1 y -1, donde 1 significa que existe una relacion fuerte, y -1 una
asociacion fuerte pero negativa [34]. El coeficiente r se calcula de la siguiente manera:

Sxy

=g, ©)

Donde Sy, es la covarianza muestral y S,.S,, corresponde a la medida de variabilidad de la variable
dependiente Y sin considerar el efecto de la variable independiente X.

3.2. Aplicacion de la técnica predictiva regresion lineal multiple

Se identificé una compaiiia dedicada a la actividad sidertirgica en México, con el fin de tener acceso y poder
realizar un analisis exhaustivo al interior de la empresa, sobre los diversos mecanismos existentes e implementados
para la administracion y gestion de energéticos de gas natural dentro de la compaiiia. De acuerdo con el analisis
del proceso en sitio, se tomd la decision de considerar por departamento el volumen de consumo de gas natural,
debido a la distinta forma de operar de cada uno de ellos, tomando como caracteristica, que los departamentos
seleccionados representan el grueso del consumo de gas natural de la empresa, obteniéndose cuatro departamentos
dedicados a la actividad de produccion y un departamento dedicado a la actividad de generacion de energia. En la
Tabla 1, se muestra la agrupacion de los departamentos por similitud de actividad productiva y operacion.
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Tabla 1. Agrupacion de departamentos por operacion. Fuente: Elaboracion propia.

Actividad Operacién Departamento
Produccion 1 Departamento A
Produccion 1 Departamento B
Produccion 2 Departamento D
Produccion 2 Departamento E
Generacion de Energia 3 Departamento C

3.2.1. Recopilacion de datos

El proceso de recopilacion de datos consistio en una serie de entrevistas no estructuradas, con los encargados de
Informacion y Estadistica Energética de la empresa acerera y las observaciones realizadas sobre el proceso en
sitio. Se tuvo acceso al sistema informatico encargado de recopilar y almacenar los datos generados por los
diferentes departamentos de la compaiiia. Dentro de la informacion registrada por el sistema (Figura 4), se
encuentran datos de produccion, consumo de gas natural, consumo de gas coque e inyeccion de carbon, etc.

AYOUT IULAS DATA  REVIEW  VIEW | PIDATALINK POWERPIVOT TEAM  Fred Zhang

b »- H - H ( %

Calculated Tjme Explore Compare Search Properties te Resources Notification
Data~  Filfered ~ o v - Search

[——]

cac
Ga6

Events Properties Update Notifications

Calculated Data

® Datz item

_) Expression

|

Root path (optional)

Figura 4. Sistema informatico PI System.

Una vez descargadas las bases de datos historicas en formato Excel, se unific6 en un solo archivo todo el conjunto
de datos, para posteriormente clasificarlos segun la actividad de cada departamento. Dentro de la actividad de
produccion se agruparon cuatro departamentos, mientras que en la actividad de generacion de energia eléctrica se
agrupo un departamento (Tabla 2). El periodo de descarga de datos comprendi6 del afio 2014 al 2019, de cada uno
de los departamentos.

Tabla 2. Clasificacion de informacion segun la actividad por departamento. Fuente: Elaboracion propia.

Volumen Volumen
de consumo de Inyeccién
Actividad Departamento Afio Mes Dia de gas consumo  Produccion de’
natural de gas (t) carbon
solicitado natural (t)
(m%) real (m®)

25380.00 33523.73 4556.98 422243
25380.00 33914.76 4464.21 4052.76
25380.00 34295.72 4594.89 4452.53
25380.00 34523.70 4379.66 4189.65
25380.00 29895.30 3707.81 3504.98
25380.00 29359.13 3658.07 3946.73
25380.00 34374.00 4198.31 4455.09

Produccion  Departamento D 2017 10
Produccion  Departamento D 2017 10
Produccion  Departamento D 2017 10
Produccion  Departamento D 2017 10
Produccion  Departamento D 2017 10
Produccion  Departamento D 2017 10
Produccion  Departamento D 2017 10

~N N BN~
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Producciéon  Departamento D 2017 10 8 25380.00 29205.08 3594.24 3735.21
Producciéon  Departamento D 2017 10 9 25380.00 29762.55 4477.43 4985.54
Producciéon  Departamento D 2017 10 10 25380.00 28876.43 4541.26 5307.40
Producciéon  Departamento D 2017 10 11 25380.00 29080.73 4623.28 5830.69
Producciéon  Departamento D 2017 10 12 25380.00 29138.25 4618.86 5892.87
Producciéon  Departamento D 2017 10 13 25380.00 29143.58 4674.50 5998.08
Producciéon  Departamento D 2017 10 14 25380.00 20346.15 4557.05 5854.66
Producciéon  Departamento D 2017 10 15 25380.00 26601.68 4611.82 5858.34
Producciéon  Departamento D 2017 10 16 25380.00 25607.70 3531.51 4547.00
Producciéon  Departamento D 2017 10 17 25380.00 2810.03 1236.40 1407.69
Producciéon  Departamento D 2017 10 18 25380.00 25811.63 2961.84 3440.69
Producciéon  Departamento D 2017 10 19 25380.00 28278.00 4657.63 5702.15
Producciéon ~ Departamento D 2017 10 20 25380.00 28252.28 4556.50 5384.88
Producciéon  Departamento D 2017 10 21 25380.00 37661.25 4378.27 3596.37
Producciéon  Departamento D 2017 10 22 25380.00 37606.65 3930.44 0123.58
Producciéon  Departamento D 2017 10 23 00000.00 02883.38 0870.94 0000.00

3.2.2. Transformacion y limpieza de datos

Una vez clasificada la informacion de los distintos departamentos, se procedi6 a identificar valores invalidos que
pudieran sesgar la presente investigacion; se inicio con la eliminacion de aquellos registros que tuvieran valores
vacios o negativos, que hacen referencia a una mala lectura por parte de los sensores, los cuales son los encargados
de recopilar los datos de consumo de gas natural de los diversos procesos de la empresa.

Después se analizo el conjunto de datos para revisar la posible existencia de valores atipicos mediante la
prueba de Dixon; esto consiste en determinar si el valor mas grande o el valor mas bajo de una muestra, o los dos
valores mas grandes, o los dos mas pequefios pueden considerarse valores atipicos. Una vez aplicada la técnica de
Dixon, se identifico la presencia de valores atipicos en cada conjunto de datos, tal como se puede observar seglin
el p-values calculado en cada grupo de datos (Tabla 3). Los valores atipicos fueron eliminados del conjunto de
datos a analizar.

Tabla 3. Prueba de Dixon para valores atipicos. Fuente: Elaboracion propia.

Departamento Numero de observaciones  p-values>alfa
Departamento A 1747 0.653>0.05
Departamento B 1479 0.885>0.05
Departamento C 1759 0.082>0.05
Departamento D 1290 0.255>0.05
Departamento E 475 0.109>0.05

3.2.3. Identificacion de variables

Con base en la informacion obtenida por el sistema informéatico y las entrevistas realizadas con cada uno de los
departamentos de interés para modelar y caracterizar el fendomeno de estudio de este trabajo, se logrd identificar
las siguientes variables explicativas, las cuales fueron definidas con respecto a la actividad dedicada y a la forma
de operacion de cada departamento; la variable respuesta corresponde al volumen de consumo de gas natural. En
la Tabla 4, se muestran las variables consideradas para cada modelo.

Tabla 4. Designacion de las variables (de respuesta y explicativas) de los modelos. Fuente: Elaboracion propia.

Actividad  Departamento Variable respuesta Variables predictoras

Produccion (t), eficiencia, volumen
de gas coque (m3) y horas de
trabajo promedio de las maquinas.

Volumen de consumo de gas

Producciéon  Departamento A
P natural (m?)
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Produccion  Departamento B

Produccion  Departamento D

Produccion  Departamento E

Produccion (t), eficiencia, volumen
Volumen de consumo de gas ’

3
natural (m3) de gas coque (m*) y horas de

trabajo promedio de las maquinas.
Produccion, masa de inyeccion de
carbon (1), eficiencia y temperatura
ambiente (°C).
Produccion (t), masa de inyeccion
de carbon (), eficiencia y
temperatura ambiente (°C).

Volumen de consumo de gas
natural (m?)

Volumen de consumo de gas
natural (m?)

Generacion Volumen de consumo de gas Produccion IMW), eficiencia y

de Energia

Departamento C .
P natural (m3) temperatura ambiente (°C)

Nota: Las unidades de medidas utilizadas para las diferentes variables identificadas son: t = toneladas, m3= metros
cubicos, °C = grados centigrados y MW = megavatio.

La seleccion de variables fue realizada conforme a lo siguiente: dadas la similitud de operacion del departamento
Ay B se seleccionaron las siguientes variables:

1.

La variable de produccion (t) fue seleccionada para ambos departamentos (A y B) debido a la
importancia del impacto que tiene en el consumo de gas natural por mes, asimismo, esta variable de
acuerdo con el personal encargado de la programacion energética resulta fundamental para que la
empresa se pueda mantener competitiva frente a sus rivales, siempre y cuando puedan lograr
producciones optimas con el mejor prondstico de consumo de gas natural sin caer en excesos que
proporcionen pérdidas econdmicas.

2. Variable de eficiencia, este indicador esta relacionado directamente con el uso de volumen de consumo

3.

de gas natural de cada una de las unidades de producciéon inherente a los procesos siderurgicos.
Convirtiéndose asi en un aspecto relevante para disminuir o incrementar el volumen de consumo de gas
natural dentro de la compaiiia.

Volumen de gas coque (m?), esta variable ha sido identificada por la importancia del impacto que tiene
en el consumo de gas natural en los procesos siderurgicos, debido a que mediante el uso de esta
alternativa de combustible se puede controlar o disminuir de forma positiva el volumen de consumo de
gas natural.

4. El funcionamiento de los equipos (horas de trabajo promedio de las mdaquinas) es uno de los factores

decisivos en la productividad de la empresa que impacta de forma directa en el consumo de gas natural,
debido a que cuando surgen algunos problemas (incontrolables por el personal operativo). Los
encargados de la nominacion del gas natural tienden a realizar peticiones de abastecimiento a su maxima
capacidad para cada una de las maquinas en operacion, provocando con ello el suministro excesivo de
gas natural sin llegar a utilizarse en ocasiones.

Al igual que en los departamentos anteriores, se definieron las variables de produccion (t) y eficiencia, sin
embargo, para los departamentos D y E se agregaron las siguientes variables de analisis:

1.

Masa de inyeccion de carbon (t), esta variable fue seleccionada debido a que la inyeccion de combustible
de este tipo en los departamentos D y E en la mayoria de los casos es utilizada para reducir el consumo
de gas natural por tonelada producida.

2. La temperatura ambiente en especifico para estos departamentos y de acuerdo con los encargados de la

programacion energética, el clima resultaba ser un factor importante en el consumo de gas natural. La
importancia de esta variable radica en el hecho de que los usuarios de los departamentos (D y E)
manifiestan que la maquinaria utilizada en el proceso de operacion en los meses de invierno suele tardar
mas para obtener el calentamiento operativo del horno, provocando asi un mayor consumo de volumen
de gas natural. En cambio, en los meses donde la temperatura ambiente es alta, tiende a tardar menos el
proceso de calentamiento del horno utilizados por los departamentos.

Finalmente se realiz6 la seleccion de variables del inico departamento dedicado a la generacion de energia, el

cual, al igual que en los departamentos anteriores posee las mismas caracteristicas de las variables de produccion
(t) y eficiencia. Asimismo, que en los departamentos de operacion de tipo 2, para este departamento fue
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considerada la variable de temperatura ambiente debido al incremento del uso de la maquinaria de operacion del
departamento E.

3.2.4. Construccion de los modelos de RLM

Para la construccion del modelado de los datos mediante la técnica de prediccion de RLM, se utilizé Excel a través
del complemento XLSTAT, la cual tiene incorporadas una serie de técnicas de modelado y funciones estadisticas
para el analisis y comportamiento de datos. Se siguid el proceso que se muestra en la Figura 5 con tres fases; la
primera corresponde a la seleccion de variables, después se calcularon las medidas de exactitud para determinar
la validez y confiabilidad de cada uno de los modelos y finalmente se realiz6 la evaluacion de estos modelos
mediante dos grupos de entrenamiento; el primer grupo de datos correspondio a los registros histdricos del proceso
en sitio de dos meses, mientras que el segundo grupo de datos estuvo compuesto por los datos estimados
(promedios) de las variables definidas para cada modelo.

Matriz de correlacion |

Seleccién de variables Factor de Inflacién de la Varianza (VIF)

Prueba de significancia global de RLM

Parametros finales del modelo matematico

Coeficiente de determinacion al cuadrado (R?)

Validez
(Medidas de exactitud)

Error porcentual absoluto medio (MAPE)

Desviacion absoluta de la media (MAD)

Raiz del error cuadratico medio (RMSE)

Proceso de construccion del modelo de RLM

Grupo de entrenamiento 1: Datos historicos

SN R N R A1 s

~| Evaluacién del modelo

Coeficiente de determinacion (R) |

Grupo de entrenamiento 2: Datos estimados (promedios)

Figura 5. Construccion de los modelos de regresion lineal multiple.

4. Resultados

Para validar y determinar si cada modelo propuesto para los diferentes departamentos (A, B, C, D y E) mejora el
prondstico de volumen de consumo de gas natural , se tomaron como referencia las medidas de exactitud de cada
modelo que se muestran en la Tabla 5 y las medidas de error de pronodstico arrojadas por el grupo de datos de
entrenamiento en la Tabla 6, donde se pudo observar que los indicadores d¢ RMSE, MAD y MAPE de los modelos
basados en regresion lineal multiple, obtienen mejores resultados de ajustes con respecto al método tradicional
utilizado por la compafiia.

Tabla S. Resultados obtenidos de las medidas de exactitud de cada uno de los modelos. Fuente: Elaboracion propia.

Medidas de exactitud

Modelo Ecuacién R: MAPE RMSE
(%)
Modelo 1 Volumen de consumo de gas natural = 111953.01
odelo
—Vol d x 0.428
(Departamento otumen ae gas coque © 0737 5222 22731.85
A) +Horas de trabajo promedio de las maquinas X

11941.17
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Volumen de consumo de gas natural =
61958.11 + Produccion x 52.53

Modelo 2 + Volumen de gas coque X 0.075
(Departamento — Eficiencia x 2502424.96 0.817 10.249 9451.62
B) —Horas de trabajo promedio de las maquinas
x112.71

Volumen de consumo de gas natural
=131107.881
+ Producciéon x 73.074
Modelo 3 — Masa de inyeccion de carbon
(Departamento X 7.772 0.944 7.346 26864.53

D) — Eficiencia x 10131807.66
+ Temperatura ambiente
x 1412.169

Volumen de consumo de gas natural

= 289297.433
Modelo 4 + Produccion x 98.971
(Departamento — Masa de inyeccién de carbon X 5.385 — 0.977 2.892 13797.77
E) Eficiencia x 27707698.14

+Temperatura ambiente X557.167

Volumen de consumo de gas natural

Modelo 5 = 215873.685
(Departamento + Produccion x 0.246 0.997 0.141 661.111
O —Eficiencia X 532949.574 +

Temperatura ambiente X 7.290

Nota: R?= Coeficiente de determinacion al cuadrado, MAPE = Error porcentual absoluto medio y RMSE= Raiz del error
cuadratico medio.

Tabla 6. Medidas de error de pronostico de los diferentes modelos propuestos. Fuente: Elaboracion propia.

Modelo 1 Modelo 2 Modelo 3 Modelo 4 Modelo 5
RLM/MT RLM/MT RLM/MT RLM/MT RLM/MT
RMSE 35305.06 / 10278.01 / 48384.42 / 27490.14 / 187.19/
134958.70 34581.12 111661.65 104146.06 23928.90
MAD 28292.73 / 9178.78 / 40649.32 / 2176743/ 156.90 /
101706.09 30989.32 90766.52 79500.53 22892.10
MAPE 9.44 / 15.68 / 17.02/ 8.90/ 0.09/
(%) 37.52 49.33 44.80 25.94 12.67

Nota: Método de regresion lineal multiple (RLM), método tradicional (MT), raiz del error medio al cuadrado (RMSE),
desviacion absoluta de la media (MAD), error porcentual absoluto medio (MAPE).

En el analisis de los modelos propuestos de regresion lineal multiple no se observo presencia de multicolinealidad
entre las variables explicativas de los modelos 2, 3, 4 y 5, debido a que los valores obtenidos de la prueba del
Factor de Inflacion de la Varianza (VIF) no fueron superiores a 10, por lo tanto, se consideraron todas las variables
regresoras definidas para cada modelo [35]. Sin embargo, en el modelo 1 se presenté multicolinealidad en dos de
sus variables, por lo cual fueron descartadas del modelo. En la Tabla 7 se muestran los resultados del VIF de cada
modelo.
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Tabla 7. Prueba del Factor de Inflacion de la Varianza para los modelos de regresion lineal multiple.

Modelo Variables regresoras
Horas de Masa de
Volumen trabajo inyeccion  Temperatura
Produccion  Eficiencia  de gas promedio de de ambiente
coque .. ,
las mdquinas  carbdn
Modelo 1 70.785 1.047 1.174 71.794 NA NA
(Departamento A)
Modelo 2 1.495 5.590 6.681 1.056 NA NA
(Departamento B)
Modelo 3 VIF 2455 1.299 NA NA 2.513 1.140
(Departamento D)
Modelo 4
odelo 1.794 1.370 NA NA 1.919 1234
(Departamento E)
Model
odelo’3 1.455 1.430 NA NA NA 1.102

(Departamento C)
Nota: NA= No aplica.
Fuente: Elaboracion propia.

4.1. Pronosticos usando el modelo de regresion lineal multiple

Con la aplicacion de las técnicas de prediccion de RLM para el departamento A, se puede observar en la Figura 6,
que el método de RLM obtiene mejor resultado de prondstico de volumen de consumo de gas natural con respecto
al método tradicional, obteniendo un 9.44% de error porcentual absoluto medio (MAPE) con respecto al 37.52%
obtenido por el método tradicional mostrado en la Tabla 6. Esto es respaldado por las medidas de exactitud
calculadas para el Modelo 1, en el cual se determino que las variables independientes explican la variabilidad del
consumo de gas natural en un 74%, mientras que MAPE fue del 5.22%. Se confirma la importancia de la variable
horas de trabajo promedio de las maquinas como uno de los factores mas influyentes en el volumen de consumo
de gas natural segun el analisis de la suma de cuadrados tipo III.

Método tradiCional  em\/olumen de consumo de gas Natural e Metodo RLM (Modelo 1)

T 600000.00

§ 500000.00

% 400000.00

5 E 200000.00

g 100000.00

= 0.00

g 1 35 9 11131517192124262931 4 6 8 10 12 14 16 18 20 22 24 26 28 30
§ Dias

Figura 6. Comparacion del método de RLM (Modelo 1) con respecto al método tradicional para el prondstico del volumen
de consumo de gas natural (m?).

En la Figura 7 se muestran los resultados obtenidos para el departamento B, donde se determina que el método de
RGLM (Modelo 2) sigue manteniendo una mejor prediccion del consumo de gas natural con respecto al método
tradicional; se obtuvo un mejor porcentaje de error (MAPE) de 15.68% con respecto al método tradicional que
obtuvo un 49.33%. Pese a que la naturaleza del departamento es compleja debido a diversos factores no
controlables (dias de paros no programables, defecto en alguna de sus maquinas de trabajo y accidentes imprevistos
en el area operativa) que suelen influir de manera directa sobre el consumo de gas natural, las medidas de exactitud
del Modelo 2 reflejan que las variables independientes para este modelo explican en 82% la variabilidad de la
variable dependiente de volumen de consumo de gas natural de forma confiable, aportando asi, pronodsticos mas
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asertivos que el método tradicional utilizado actualmente. Para este modelo, el grupo de datos que obtuvo mejor
comportamiento de prondstico fue el grupo uno.

Método tradicional Volumen de consumo de gas Natural real e Meétodo RLM (Modelo 2)

120000.00
100000.00
80000.00
60000.00
40000.00
20000.00

0.00
6 8 10 12 1517 19 21 23 25 27 29 31 2 4 7 9 12 14 16 24 26 28

Dias

Volumen de corsumo de gas natural
(m?)

Figura 7. Comparacion del método de RLM (Modelo 2) con respecto al método tradicional para el prondstico del volumen
de consumo de gas natural (m?).

Los resultados obtenidos del método de RLM para el departamento D se muestran en la Figura 8, donde se observa
que en este método fue incorporada la variable exogena de temperatura ambiente, la cual permitié mejorar de
manera positiva las predicciones sobre el volumen de consumo de gas natural para el departamento. El error
porcentual absoluto medio del Modelo 3 (basado en RLM) obtuvo un valor de 17.02%, mientras que el método
tradicional un 44.80%, proporcionando asi un modelo moderadamente factible para hacer pronostico sobre la
variable dependiente (volumen de consumo de gas natural). Al igual que en los modelos anteriores, las medidas
de exactitud del modelo 3 respaldan tales resultados, donde se pudo determinar que las cuatro variables
independientes (produccion, masa de inyeccion de carbon, eficiencia y temperatura ambiente) explican en un 94
% la variabilidad de la variable dependiente.

MEtodo tradicional e Volumen de consumo de gas Natural == Método de RLM (Modelo 3)

500000.00
400000.00
300000.00
200000.00
100000.00

0.00
1 3 5 7 9 11 24 26 28 30 1 3 6 8 10 12 14 16 18 27 29

Dias

Yolumen de consumo de gas
matural (m?)

Figura 8. Comparacion del método de RLM (Modelo 3) con respecto al método tradicional para el prondstico del volumen
de consumo de gas natural (m?).

Para el Modelo 4 del departamento E se asume que, este método proporciona una mejor prediccion de la variable
dependiente con respecto al método tradicional (Figura 9), donde el valor del error porcentual absoluto medio
correspondid al 8.90% y 25.94% respectivamente. También se identificd que las variables independientes en su
conjunto explican en un 98% la variabilidad del volumen de consumo de gas natural. Asimismo, se determin6 que
la variable eficiencia se relaciona e influye mas con el consumo de gas natural en el departamento E.
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MeEtodo tradicional e Volumen de consumo de gas Natural real emMeétodo RLM (Modelo 4)

w
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= 500000.00
® . 400000.00
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Figura 9. Comparacion del método de RLM (Modelo 4) con respecto al método tradicional para el prondstico del volumen
de consumo de gas natural (m?).

A continuacion, se muestran los resultados obtenidos del método de RLM (Modelo 5) del departamento C,
dedicado a la actividad productiva de energia eléctrica dentro de la compaifiia. Para este modelo, se tuvieron como
variables independientes: produccion, eficiencia y temperatura ambiente; mientras que la variable dependiente
fue el volumen de consumo de gas natural. Este modelo presentd los mejores resultados respecto a los modelos
anteriores, obteniendo como resultados de MAPE de 0.09% con respecto al método tradicional con un 12.67%;
mientras que el R? para el Modelo 5 fue de 0.997, respaldando asi la factibilidad para hacer proyecciones mas
asertivas que el método tradicional sobre consumo de gas natural (Figura 10). Entre las variables explicativas del
Modelo 5 que més influyen sobre la variable dependiente se encuentra la variable de produccion, siendo esta la de
mayor correlacion con respecto a las demas variables.

Método Tradicional e Volumen de consumo de gas Natural real eeétodo RLM (Modelo 5)
300000.00

200000.00 — —

100000.00

0.00
Dia 2 20 24 26 28 30 1 3 5 7 9 11 13 17 19 21 23 25 27 29
Dias

VYolumen de consumo de gas
natural (m?)

Figura 10. Comparacion del método de RLM (Modelo 5) con respecto al método tradicional para el prondstico del volumen
de consumo de gas natural (m?).

5. Discusion de resultados

A partir de los resultados y del analisis de las medidas de exactitud de cada uno de los modelos propuestos, se
determiné que, mediante el uso de un modelo matematico de gestion de recursos de gas natural, se pueden hacer
estimaciones mas precisas y confiables que permitan mejorar la eficiencia de los recursos energéticos en la
industria siderirgica en México.

Los resultados de las medidas de exactitud de los cinco modelos generados para la variable dependiente de
volumen de consumo de gas natural con sus respectivas variables explicativas obtuvieron correlaciones fuertes
(Modelo 1: 0.85, Modelo 2: 0.90, Modelo 3: 0.97, Modelo 4: 0.98, Modelo 5: 0.99). Por otra parte, los modelos
que mostraron mejor comportamiento de pronostico sobre la variable dependiente fueron los Modelos 1,4 y 5 con
un MAPE de 9.44%, 8.9% y 0.09% respectivamente. Con las variables identificadas para mejorar las estimaciones
de consumo de gas natural en los modelos 3,4 y 5, se considera que la variable exdgena es la temperatura ambiente,
debido a que mediante tal variable los procesos sidertrgicos pueden regular y estimar mejor el prondstico de
consumo de gas natural dentro de la compaiiia.

Con base en los resultados del analisis de la suma de cuadrados de tipo III, en los Modelos 2, 3 y 5 la variable
que mas influyo en el volumen de consumo de gas natural fue la variable independiente produccion; mientras que
para el Modelo 1 fue la variable de horas de trabajo promedio de las maquinas y para el Modelo 4 fue la variable
eficiencia.
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Los resultados anteriormente explicados fueron obtenidos del analisis del proceso en sitio y conforme a los
datos proporcionados por los encargados de la parte operativa de la unidad de analisis, teniendo como limitacion
el factor de confidencialidad en los datos crudos del proceso de consumo de gas natural en cada uno de los procesos
siderurgicos.

6. Conclusiones

Se ha identificado que actualmente la industria siderurgica carece de herramientas de gestion de recursos
energéticos, provocando graves problemas en la optimizacion de consumo de gas natural en sus diversos procesos
industriales. Sin embargo, este problema puede ser abordado mediante el uso de modelos predictivos basados en
regresion lineal multiple, los cuales, segun las medidas de exactitud calculadas, proporcionan mejores prondsticos
sobre el volumen de consumo de gas natural que los métodos convencionales actuales.

Los resultados del error porcentual absoluto medio y el error cuadratico medio de los modelos de RLM
(MAPE: 10.23%, RMSE: 20492.32, DAM: 20009.03) vs. método tradicional (MAPE: 34.05%, RMSE:93055.92,
DAM: 65170.91), reflejan que los modelos propuestos mejoran la gestion de recursos de gas natural, debido a que
proporcionan estimaciones mas confiables y precisas del volumen de consumo de gas natural en los procesos
siderurgicos, de tal forma que se puedan realizar planificaciones adecuadas de la programacion energética que
conlleve a un incremento en su productividad, ahorros monetarios y eficiencia en el manejo de sus recursos
energéticos de gas natural.

Por otro lado, se encontrd, que a medida que los departamentos utilizaban recursos secundarios como
combustible en sus procesos, tales como: volumen de gas coque o masa de inyeccion de carbon, estos disminuian
considerablemente el volumen de consumo de gas natural en los procesos siderurgicos.
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