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Resumen: La programación eficiente de recursos energéticos de gas natural dentro de la industria siderúrgica se 
encuentra ante muchos desafíos, debido a que este sector no cuenta con las medidas y herramientas necesarias que 
puedan apoyar su manejo eficiente. En este estudio, se propone un enfoque de pronóstico de consumo de gas 
natural mediante la técnica predictiva de regresión lineal múltiple. Para el desarrollo del modelo propuesto, se 
establecen las principales variables relacionadas con el consumo de gas natural que conformarán el modelo 
predictivo. La evaluación del modelo se llevó a cabo utilizando datos procedentes de una empresa acerera de 
México. Los resultados del error porcentual absoluto medio, la raíz del error cuadrático medio y la desviación 
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absoluta media de los modelos de RLM (MAPE: 10.23%, RMSE: 20492.32, DAM: 20009.03) vs. método 
tradicional (MAPE: 34.05%, RMSE:93055.92, DAM: 65170.91), reflejan que los modelos propuestos mejoran 
significativamente la gestión de recursos de gas natural, proporcionado una mejora sustancial en las estimaciones 
de volumen de consumo de gas natural para una planificación adecuada de su programación energética.  
 
Palabras clave: Ciencia de Datos, Regresión Lineal Múltiple, Pronóstico, Gas Natural, Industria Siderúrgica. 
 
Abstract: Efficient scheduling of natural gas energy resources within the steel industry faces many challenges, as 
this sector does not have the necessary measures and tools to support its efficient management. In this study, a 
forecasting approach to natural gas consumption is proposed using the predictive technique of multiple linear 
regression. For the development of the proposed model, the main variables related to natural gas consumption that 
will make up the predictive model are established. The evaluation of the model was carried out using data from a 
steel company in Mexico. The results of mean absolute percentage error, root mean square error and mean absolute 
deviation of RLM models (MAPE: 10.23%, RMSE: 20492.32, DAM: 20009.03) vs. traditional method (MAPE: 
34.05%, RMSE:93055.92, DAM: 65170.91), reflect that the proposed models significantly improve natural gas 
resource management, providing substantial improvement in natural gas consumption volume estimates for proper 
energy scheduling. 
 
Keywords: Data Science, Multiple Linear Regression, Forecasting, Natural Gas, Steel Industry. 
 
 
1. Introducción 
Las organizaciones a nivel mundial se enfrentan cada vez más a un entorno empresarial dinámico y complejo, para 
lo cual, deben de ser capaces de adaptarse de forma rápida y oportuna ante tales cambios [1]. Por este motivo, es 
un desafío el gestionar los recursos energéticos dentro de la industria siderúrgica, debido a que este sector es uno 
de los principales consumidores de energía en el mundo y no cuenta con las medidas y herramientas necesarias 
que puedan apoyar su manejo eficiente [2], [3], [4].  

Diferentes investigaciones han abordado el problema de la administración de recursos energéticos desde 
diversas perspectivas. Por una parte, proponen la utilización de recursos secundarios como gas de carbón, calor 
residual y los gases derivados de los procesos siderúrgicos como alternativas de fuentes de energía, con el fin de 
mejorar la eficiencia energética [5]. Asimismo, también otros autores sostienen que mediante la implementación 
de una serie de políticas heterogéneas enfocadas a la eficiencia energética podrían optimizar el consumo de 
energéticos [6].    

Estudios recientes han demostrado que, con el rápido desarrollo de la información global, las acererías 
modernas han tratado de equiparse con sistemas de planificación de recursos empresariales (ERP) y sistema de 
ejecución de la manufactura (MES) para dar soporte a la buena gestión de recursos energéticos, sin embargo, estas 
herramientas cumplen únicamente con los requisitos básicos de la transmisión rápida y oportuna de información 
de flujo de materiales utilizados en las empresas [7], dejando a un lado funcionalidades que den soporte a la 
planificación, programación, monitoreo, control y proyección de consumo sobre las diferentes fuentes de energía 
utilizadas en los procesos siderúrgicos actuales [8], ocasionando con ello una ineficiente gestión de recursos 
energéticos. 

El mejorar la buena gestión y administración energética en el sector siderúrgico, también ha sido abordada 
bajo el enfoque del uso de técnicas predictivas como herramientas de estimación del consumo de energía, con las 
cuales, puedan establecer de forma más precisa la cantidad de electricidad utilizada por los distintos procesos 
industriales. Al comprender y establecer la predicción del consumo de energía, las empresas siderúrgicas tienen a 
su disposición la oportunidad de mejorar sus estrategias de inversión y compra de energía, disminuir los costos de 
consumo energético e incrementar la productividad de su producción [9]. 

En México el sector siderúrgico, ocupó el primer lugar de consumo de energía con un 14.3% del consumo 
industrial final, siendo el gas natural la principal fuente de energía utilizada [10]. Para las empresas acereras, la 
buena gestión de recursos energéticos es clave, no solo para operar de manera eficiente cada uno de los procesos 
industriales, sino para lograr una mayor optimización en el uso de ellos, la cual puede traducirse en ahorros 
monetarios, productividad, aprovechamiento al máximo en los tiempos de producción y soporte en la toma de 
decisiones para su consumo [11]. 
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Al no contar con las suficientes herramientas o sistemas de gestión de recursos energéticos, la industria 
siderúrgica se enfrenta constantemente a problemas de cumplimento de objetivos, estimaciones imprecisas sobre 
consumo de gas natural, pérdidas económicas y disminución de eficiencia en sus procesos, convirtiéndose así, en 
una de las principales áreas de interés a mejorar [12]. Por tal motivo la presente investigación tiene como objetivo 
la propuesta de un modelo matemático basado en regresión lineal múltiple, que sirva como herramienta en el 
proceso de asignación y selección de gas natural, para mejorar la eficiencia de los recursos energéticos en la 
industria siderúrgica en México. Asimismo, los resultados ayudarán a eficientizar la planificación, productividad 
y supervisión de los procesos hacia situaciones actuales.  
 
 
2. Estado del arte 
 
2.1. Panorama actual de la gestión de recursos energéticos en el sector siderúrgico 
La gestión de recursos energéticos hasta hace unas décadas no era un elemento crucial del esquema general de la 
administración de la industria acerera, hasta que el consumo de recursos no controlado, comenzó a afectar los 
costos de operación dentro de las compañías. Actualmente, el sector siderúrgico representa una de las industrias 
con mayor consumo de recursos energéticos, provocando con ello, que este sector se encuentre en una búsqueda 
constante de herramientas tecnológicas, que apoyen una buena gestión para lograr ahorros significativos de 
consumo [13], [14], [15]. Dentro de los principales objetivos de la gestión energética se encuentran: la utilización 
adecuada de los recursos, la planificación y operación de la producción de energía y sus unidades de consumo 
[16]. Para aprovechar al máximo los recursos energéticos dentro de la industria siderúrgica, los operadores de 
programación energética tienen que ajustar en tiempo real y oportuno las cantidades de consumo de sus diversos 
procesos, para equilibrar y mejorar sus planes de operación [17].  

Dentro de las principales fuentes de energías más utilizadas se encuentran el gas natural, el coque de carbón 
y la electricidad. El gas natural es uno de los combustibles más utilizados como fuente de combustión para uso 
doméstico y uso industrial, particularmente en las industrias como la siderúrgica, la metalúrgica, la petroquímica, 
etc. Entre el año 2005 y los primeros nueve meses del 2021 el volumen requerido de gas natural creció en un 
62.4% pasando de un consumo de 5 mil 89 millones de pies cúbicos diarios (MMpcd) a 8 mil 625 MMpcd, siendo 
tres sectores los principales consumidores de este insumo, el cual estuvo dividido de la siguiente forma (Figura 1): 
el sector eléctrico con un 64.7%; seguido del petrolero que representó el 22.2%; y, en tercer lugar, el sector 
industrial con el 11.5% del total del gas natural demandado [18]. El resto del consumo de gas natural estuvo 
dividido por los sectores: el residencial (1.0%), los servicios (0.5%) y el autotransporte (0.1%). 

 
 

 
Figura 1. Demanda nacional de gas natural por sector 2020. 

 
Para realizar la predicción del consumo de gas natural dentro del sector siderúrgico, se han utilizados diversos 
métodos convencionales que van desde la experiencia de los operarios hasta modelos causales, siendo este último 
método, aplicado a la gestión de gas coque, el cual ha sido desarrollado bajo el enfoque de programación lineal 
(Figura 2), basado en modelos causales [19].  
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Figura 2. Modelo causal para el sistema CO. 

 
Por otro lado, también se han encontrado estudios enfocados a la eficiencia energética, pero desde perspectivas de 
la utilización de recursos secundarios, los cuales son adquiridos o generados al interior de las compañías 
siderúrgicas, como los que se presentan a continuación: 

a) He y Wang en [20] sostienen que una de las alternativas que tienen las industrias siderúrgicas para 
mejorar la eficiencia de los recursos energéticos, es la utilización de energías secundarias, tales como 
el gas de carbón, calor residual y gases derivados de los procesos, de tal manera que estos recursos 
sean empleados como combustible en los procesos de producción del acero. Asimismo, también 
proponen una serie de sistemas industriales transversales (sistemas de caldera, energía distribuida / 
calor y energía combinados, etc.) que podrían apoyar la buena gestión de energéticos. 

b) Para Gao et al. en [5] la forma de lograr mejoras significativas en la gestión energética es con la 
aplicación de diversas tecnologías que incluyen el uso de inyección de carbón en los hornos, 
recuperación de calor residual sinterizado y utilización de deshumidificadores industriales de alto 
rendimiento, entre otras medidas. 

c) Por otro lado, en [7] Sun et al. ponen de manifiesto también una revisión exhaustiva de diversas 
tecnologías que pudieran apoyar en la optimización de la gestión energética. Dentro de las 
tecnologías mencionadas se encuentran aquellas que tienen que ver con el almacenamiento de 
energía, inyección de carbón pulverizado, utilización de calor residual y flujo de gas de los procesos 
industriales. Además, también proponen la introducción de modelos de pronóstico de flujos de 
materiales y energía para mejorar la eficiencia energética. 

d) Dentro de las tecnologías mencionadas por Hasan, Hoq y Thollander en [21] para mejorar la 
eficiencia energética se encuentran aquellas praxis que tienen que ver con la utilización de gases de 
escape y recuperación de calor de los procesos siderúrgicos, así como el empleo de inyección de 
carbón como uno de los combustibles en los procesos de fabricación. 

 
 
3. Materiales y métodos 
En base a los datos obtenidos del proceso en sitio, se seleccionó las técnicas de regresión para la generación de los 
modelos de predicción, siendo la Regresión Lineal Múltiple (RLM), la que mejor se adapta a los objetivos del 
presente estudio, debido a que este método estadístico permite examinar la relación y predicción de una variable 
respuesta cuantitativa en función de dos o más variables predictoras, Asimismo, permite identificar y clasificar de 
manera matemática qué variables explicativas son las que mayor impacto tienen sobre el fenómeno de estudio, 
cómo interactúan las variables entre sí y qué variables se pueden ignorar, entre otros aspectos. Y dada la naturaleza 
del fenómeno de estudio donde se tiene una variable dependiente y diversas variables explicativas asociadas a su 
comportamiento, se optó por tal técnica. Otro aspecto, el cual fue considerado para la selección de la técnica de 
predicción de RLM, es el número de observaciones obtenidas del fenómeno de estudio, el cual se ajustaba de 
forma apropiada para ser utilizado por este método. La metodología desarrollada para la presente investigación 
tiene un enfoque cuantitativo de tipo no experimental- transeccional, la cual tiene como objetivo la generación de 
un modelo matemático basado en la técnica predictiva de regresión lineal múltiple para estimar las unidades de 
consumo del volumen de gas natural en la industria acerera. 
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3.1. Descripción del modelo de regresión lineal múltiple 
La técnica de regresión múltiple hace referencia a la relación de una variable dependiente con dos o más variables 
independientes, donde las variables independientes pueden combinar variables cuantitativas y cualitativas. Para 
denotar el número de variables independientes se suele usar p, tal como se muestra a continuación en la estructura 
del modelo de regresión lineal múltiple [22], [23]: 
 

𝑦" = 𝑏! + 𝑏𝑥" + 𝑏#𝑥# +⋯+ 𝑏$𝑥$ (1) 
 
Donde  𝑦" = Es la variable dependiente, que representa el valor estimado a partir de una muestra. Y 
𝑏!, 𝑏", 𝑏#, … , 𝑏$ son las estimaciones de los parámetros 𝛽!, 𝛽", 𝛽#, … , 𝛽$. 

El análisis de regresión lineal múltiple, a diferencia del simple, se aproxima más a situaciones de análisis real 
puesto que los fenómenos hechos por definición, son complejos y, en consecuencia, deben ser explicados en la 
medida de lo posible por la serie de variables que directa e indirectamente participan en su concreción [24].    

La regresión lineal múltiple posee seis supuestos claves que hay que considerar para realizar y desarrollar un 
análisis preciso y no sesgado durante la aplicación de la técnica [25], [26], [27]: 

• Normalidad 
• Ausencia de errores de medición 
• Relación lineal 
• La media de los residuales debe de ser igual a 0 
• Multicolinealidad 
• Homocedasticidad 

 
 
3.1.1. Proceso de estimación en la regresión múltiple 
Para realizar el proceso de regresión múltiple, se inicia con el cálculo de los parámetros desconocidos 
𝑏!, 𝑏", 𝑏#, … , 𝑏$, los cuales son las estimaciones de 𝛽!, 𝛽", 𝛽#, … , 𝛽$. Una vez obtenidos los parámetros se integran 
al modelo de regresión lineal múltiple tal como se muestra en la Figura 3 [28]. 

 

 
Figura 3. Procesos de estimación de parámetros en RLM.  

 
 
3.1.2. Medidas de exactitud para la evaluación del modelo de regresión 
Para evaluar el rendimiento de los modelos de regresión, se tienen unas series de medidas de exactitud entre las 
cuales destacan las siguientes [29]:  

• Raíz del error cuadrático medio (RMSE): Es una medida absoluta de ajuste que es utilizada como criterio 
de predicción dentro de lo modelos matemáticos, la cual representa el promedio del cuadrado de la 
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distancia entre el valor pronosticado y el valor real que se quiere estimar, tal como se muestra a 
continuación [30]: 

𝑅𝑀𝑆𝐸 = /"
%
∑ (𝑦& − 𝑦'3)#%
&("  ,  (2) 

 
Donde cada 𝑦& corresponde a una observación confiable (𝑦"&) y n es el total de observaciones de un 
conjunto de valores. 
 

• Error porcentual medio absoluto (MAPE): Métrica que tiene como objetivo medir el grado de certeza con 
que se realiza un valor estimado, midiéndose el tamaño del error, en términos porcentuales definiéndose 
de la siguiente manera [31]:  
 

𝑀𝐴𝑃𝐸 = "!!
%
×∑ 8)!*)+!

)!
8%

&(" , (3) 

 
• Desviación absoluta media (MAD): Medida estadística de error que representa el promedio de la distancia 

entre cada par de puntos reales y ajustados en un conjunto de datos y está dada por [32]: 
 

𝑀𝐴𝐷 =
∑ -"!#"

$!
"!

-%
!&'

%
,  (4) 

 
Donde:  valor real en el periodo 𝑥& ; 𝑥"& es el valor de predicción en el periodo i; y n es el número total 
de períodos temporales (número de observaciones). 

 
• Coeficiente de determinación (r2): Medida estadística para estimar el porcentaje de explicación de la 

variable dependiente a partir de una o más variables independientes, y su expresión es la siguiente [33]:  
 

 𝑟# = ∑ (/(0*/1)%
!&'

∑ (/(*/1)%
(&'

1111111111111111	= 1-∑ (/(0*/1)%
!&'

∑ (/(*/1)%
(&'

1111111111111111,                             (5) 

 
• Coeficiente de correlación (r):  Es el encargado de medir la intensidad de la relación entre un conjunto 

de variables independientes y una variable dependiente, de tal forma que se puedan identificar las 
variables más influyentes sobre la variable dependiente. Los valores en los que puede oscilar el 
coeficiente de correlación son entre 1 y -1, donde 1 significa que existe una relación fuerte, y -1 una 
asociación fuerte pero negativa [34]. El coeficiente r se calcula de la siguiente manera: 
 

 𝑟 = 3")
3"3)

,  (6) 

 
Donde 𝑆)/ es la covarianza muestral y 𝑆)𝑆/ corresponde a la medida de variabilidad de la variable 
dependiente Y sin considerar el efecto de la variable independiente X. 

 
 
3.2. Aplicación de la técnica predictiva regresión lineal múltiple  
Se identificó una compañía dedicada a la actividad siderúrgica en México, con el fin de tener acceso y poder 
realizar un análisis exhaustivo al interior de la empresa, sobre los diversos mecanismos existentes e implementados 
para la administración y gestión de energéticos de gas natural dentro de la compañía. De acuerdo con el análisis 
del proceso en sitio, se tomó la decisión de considerar por departamento el volumen de consumo de gas natural, 
debido a la distinta forma de operar de cada uno de ellos, tomando como característica, que los departamentos 
seleccionados representan el grueso del consumo de gas natural de la empresa, obteniéndose cuatro departamentos 
dedicados a la actividad de producción y un departamento dedicado a la actividad de generación de energía. En la 
Tabla 1, se muestra la agrupación de los departamentos por similitud de actividad productiva y operación. 
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Tabla 1.  Agrupación de departamentos por operación. Fuente: Elaboración propia. 

Actividad Operación Departamento 
Producción 1 Departamento A 
Producción 1 Departamento B 
Producción 2 Departamento D 
Producción 2 Departamento E 

Generación de Energía 3 Departamento C 
 

 
3.2.1. Recopilación de datos 
El proceso de recopilación de datos consistió en una serie de entrevistas no estructuradas, con los encargados de 
Información y Estadística Energética de la empresa acerera y las observaciones realizadas sobre el proceso en 
sitio. Se tuvo acceso al sistema informático encargado de recopilar y almacenar los datos generados por los 
diferentes departamentos de la compañía. Dentro de la información registrada por el sistema (Figura 4), se 
encuentran datos de producción, consumo de gas natural, consumo de gas coque e inyección de carbón, etc.  
 

 
Figura 4.  Sistema informático PI System. 

 
Una vez descargadas las bases de datos históricas en formato Excel, se unificó en un solo archivo todo el conjunto 
de datos, para posteriormente clasificarlos según la actividad de cada departamento. Dentro de la actividad de 
producción se agruparon cuatro departamentos, mientras que en la actividad de generación de energía eléctrica se 
agrupó un departamento (Tabla 2). El período de descarga de datos comprendió del año 2014 al 2019, de cada uno 
de los departamentos. 

 
Tabla 2. Clasificación de información según la actividad por departamento. Fuente: Elaboración propia. 

Actividad Departamento Año Mes Día 

Volumen 
de consumo 

de gas 
natural 

solicitado 
(m3) 

Volumen 
de 

consumo 
de gas 

natural 
real (m3) 

Producción 
(t) 

Inyección 
de 

carbón 
(t) 

Producción Departamento D 2017 10 1 25380.00 33523.73 4556.98 4222.43 
Producción Departamento D 2017 10 2 25380.00 33914.76 4464.21 4052.76 
Producción Departamento D 2017 10 3 25380.00 34295.72 4594.89 4452.53 
Producción Departamento D 2017 10 4 25380.00 34523.70 4379.66 4189.65 
Producción Departamento D 2017 10 5 25380.00 29895.30 3707.81 3504.98 
Producción Departamento D 2017 10 6 25380.00 29359.13 3658.07 3946.73 
Producción Departamento D 2017 10 7 25380.00 34374.00 4198.31 4455.09 
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Producción Departamento D 2017 10 8 25380.00 29205.08 3594.24 3735.21 
Producción Departamento D 2017 10 9 25380.00 29762.55 4477.43 4985.54 
Producción Departamento D 2017 10 10 25380.00 28876.43 4541.26 5307.40 
Producción Departamento D 2017 10 11 25380.00 29080.73 4623.28 5830.69 
Producción Departamento D 2017 10 12 25380.00 29138.25 4618.86 5892.87 
Producción Departamento D 2017 10 13 25380.00 29143.58 4674.50 5998.08 
Producción Departamento D 2017 10 14 25380.00 20346.15 4557.05 5854.66 
Producción Departamento D 2017 10 15 25380.00 26601.68 4611.82 5858.34 
Producción Departamento D 2017 10 16 25380.00 25607.70 3531.51 4547.00 
Producción Departamento D 2017 10 17 25380.00 2810.03 1236.40 1407.69 
Producción Departamento D 2017 10 18 25380.00 25811.63 2961.84 3440.69 
Producción Departamento D 2017 10 19 25380.00 28278.00 4657.63 5702.15 
Producción Departamento D 2017 10 20 25380.00 28252.28 4556.50 5384.88 
Producción Departamento D 2017 10 21 25380.00 37661.25 4378.27 3596.37 
Producción Departamento D 2017 10 22 25380.00 37606.65 3930.44 0123.58 
Producción Departamento D 2017 10 23 00000.00 02883.38 0870.94 0000.00 
 

 
3.2.2. Transformación y limpieza de datos 
Una vez clasificada la información de los distintos departamentos, se procedió a identificar valores inválidos que 
pudieran sesgar la presente investigación; se inició con la eliminación de aquellos registros que tuvieran valores 
vacíos o negativos, que hacen referencia a una mala lectura por parte de los sensores, los cuales son los encargados 
de recopilar los datos de consumo de gas natural de los diversos procesos de la empresa.  

Después se analizó el conjunto de datos para revisar la posible existencia de valores atípicos mediante la 
prueba de Dixon; esto consiste en determinar si el valor más grande o el valor más bajo de una muestra, o los dos 
valores más grandes, o los dos más pequeños pueden considerarse valores atípicos. Una vez aplicada la técnica de 
Dixon, se identificó la presencia de valores atípicos en cada conjunto de datos, tal como se puede observar según 
el p-values calculado en cada grupo de datos (Tabla 3). Los valores atípicos fueron eliminados del conjunto de 
datos a analizar. 
 

Tabla 3. Prueba de Dixon para valores atípicos. Fuente: Elaboración propia. 
Departamento Número de observaciones p-values>alfa 
Departamento A 1747 0.653>0.05 
Departamento B 1479 0.885>0.05 
Departamento C 1759 0.082>0.05 
Departamento D 1290 0.255>0.05 
Departamento E 475 0.109>0.05 

 
 
3.2.3. Identificación de variables 
Con base en la información obtenida por el sistema informático y las entrevistas realizadas con cada uno de los 
departamentos de interés para modelar y caracterizar el fenómeno de estudio de este trabajo, se logró identificar 
las siguientes variables explicativas, las cuales fueron definidas con respecto a la actividad dedicada y a la forma 
de operación de cada departamento; la variable respuesta corresponde al volumen de consumo de gas natural. En 
la Tabla 4, se muestran las variables consideradas para cada modelo. 
 

Tabla 4. Designación de las variables (de respuesta y explicativas) de los modelos. Fuente: Elaboración propia. 

Actividad Departamento Variable respuesta Variables predictoras 

Producción Departamento A 
Volumen de consumo de gas 

natural (m4) 

Producción (t), eficiencia, volumen 
de gas coque (m4) y horas de 

trabajo promedio de las máquinas. 
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La selección de variables fue realizada conforme a lo siguiente: dadas la similitud de operación del departamento 
A y B se seleccionaron las siguientes variables: 

1. La variable de producción (t) fue seleccionada para ambos departamentos (A y B) debido a la 
importancia del impacto que tiene en el consumo de gas natural por mes, asimismo, esta variable de 
acuerdo con el personal encargado de la programación energética resulta fundamental para que la 
empresa se pueda mantener competitiva frente a sus rivales, siempre y cuando puedan lograr 
producciones optimas con el mejor pronóstico de consumo de gas natural sin caer en excesos que 
proporcionen pérdidas económicas. 

2. Variable de eficiencia, este indicador está relacionado directamente con el uso de volumen de consumo 
de gas natural de cada una de las unidades de producción inherente a los procesos siderúrgicos. 
Convirtiéndose así en un aspecto relevante para disminuir o incrementar el volumen de consumo de gas 
natural dentro de la compañía.  

3. Volumen de gas coque (𝑚4), esta variable ha sido identificada por la importancia del impacto que tiene 
en el consumo de gas natural en los procesos siderúrgicos, debido a que mediante el uso de esta 
alternativa de combustible se puede controlar o disminuir de forma positiva el volumen de consumo de 
gas natural.  

4. El funcionamiento de los equipos (horas de trabajo promedio de las máquinas) es uno de los factores 
decisivos en la productividad de la empresa que impacta de forma directa en el consumo de gas natural, 
debido a que cuando surgen algunos problemas (incontrolables por el personal operativo). Los 
encargados de la nominación del gas natural tienden a realizar peticiones de abastecimiento a su máxima 
capacidad para cada una de las máquinas en operación, provocando con ello el suministro excesivo de 
gas natural sin llegar a utilizarse en ocasiones.  

 
Al igual que en los departamentos anteriores, se definieron las variables de producción (t) y eficiencia, sin 
embargo, para los departamentos D y E se agregaron las siguientes variables de análisis: 

1. Masa de inyección de carbón (t), esta variable fue seleccionada debido a que la inyección de combustible 
de este tipo en los departamentos D y E en la mayoría de los casos es utilizada para reducir el consumo 
de gas natural por tonelada producida. 

2. La temperatura ambiente en específico para estos departamentos y de acuerdo con los encargados de la 
programación energética, el clima resultaba ser un factor importante en el consumo de gas natural. La 
importancia de esta variable radica en el hecho de que los usuarios de los departamentos (D y E) 
manifiestan que la maquinaria utilizada en el proceso de operación en los meses de invierno suele tardar 
más para obtener el calentamiento operativo del horno, provocando así un mayor consumo de volumen 
de gas natural. En cambio, en los meses donde la temperatura ambiente es alta, tiende a tardar menos el 
proceso de calentamiento del horno utilizados por los departamentos. 

Finalmente se realizó la selección de variables del único departamento dedicado a la generación de energía, el 
cual, al igual que en los departamentos anteriores posee las mismas características de las variables de producción 
(t) y eficiencia. Asimismo, que en los departamentos de operación de tipo 2, para este departamento fue 

Producción Departamento B 
Volumen de consumo de gas 

natural (m4) 

Producción (t), eficiencia, volumen 
de gas coque (m4)	y horas de 

trabajo promedio de las máquinas. 

Producción Departamento D 
Volumen de consumo de gas 

natural (m4) 

Producción, masa de inyección de 
carbón (t), eficiencia y temperatura 

ambiente (ºC). 

Producción Departamento E 
Volumen de consumo de gas 

natural (m4) 

Producción (t), masa de inyección 
de carbón (t), eficiencia y 

temperatura ambiente (ºC). 
Generación 
de Energía Departamento C 

Volumen de consumo de gas 
natural (m4) 

Producción (MW), eficiencia y 
temperatura ambiente (ºC) 

Nota: Las unidades de medidas utilizadas para las diferentes variables identificadas son: t = toneladas, m!= metros 
cúbicos, ºC = grados centígrados y MW = megavatio.  
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considerada la variable de temperatura ambiente debido al incremento del uso de la maquinaria de operación del 
departamento E. 
 
 
3.2.4. Construcción de los modelos de RLM 
Para la construcción del modelado de los datos mediante la técnica de predicción de RLM, se utilizó Excel a través 
del complemento XLSTAT, la cual tiene incorporadas una serie de técnicas de modelado y funciones estadísticas 
para el análisis y comportamiento de datos. Se siguió el proceso que se muestra en la Figura 5 con tres fases; la 
primera corresponde a la selección de variables, después se calcularon las medidas de exactitud para determinar 
la validez y confiabilidad de cada uno de los modelos y finalmente se realizó la evaluación de estos modelos 
mediante dos grupos de entrenamiento; el primer grupo de datos correspondió a los registros históricos del proceso 
en sitio de dos meses, mientras que el segundo grupo de datos estuvo compuesto por los datos estimados 
(promedios) de las variables definidas para cada modelo. 
 
 

 
Figura 5.  Construcción de los modelos de regresión lineal múltiple. 

 
 

4. Resultados 
Para validar y determinar si cada modelo propuesto para los diferentes departamentos (A, B, C, D y E) mejora el 
pronóstico de volumen de consumo de gas natural , se tomaron como referencia las medidas de exactitud de cada 
modelo que se muestran en la Tabla 5 y las medidas de error de pronóstico arrojadas por el grupo de datos de 
entrenamiento en la Tabla 6, donde se pudo observar que los indicadores de  RMSE, MAD y MAPE de los modelos 
basados en regresión lineal múltiple, obtienen mejores resultados de ajustes con respecto al método tradicional 
utilizado por la compañía.   
 

Tabla 5. Resultados obtenidos de las medidas de exactitud de cada uno de los modelos. Fuente: Elaboración propia. 

Modelo Ecuación 
Medidas de exactitud 

R2 MAPE 
(%) 

RMSE 

Modelo 1 
(Departamento 

A) 

𝑉𝑜𝑙𝑢𝑚𝑒𝑛	𝑑𝑒	𝑐𝑜𝑛𝑠𝑢𝑚𝑜	𝑑𝑒	𝑔𝑎𝑠	𝑛𝑎𝑡𝑢𝑟𝑎𝑙	 = 111953.01 
−𝑉𝑜𝑙𝑢𝑚𝑒𝑛	𝑑𝑒	𝑔𝑎𝑠	𝑐𝑜𝑞𝑢𝑒	 × 0.428 

+𝐻𝑜𝑟𝑎𝑠	𝑑𝑒	𝑡𝑟𝑎𝑏𝑎𝑗𝑜	𝑝𝑟𝑜𝑚𝑒𝑑𝑖𝑜	𝑑𝑒	𝑙𝑎𝑠	𝑚á𝑞𝑢𝑖𝑛𝑎𝑠 × 
11941.17 

0.737 5.222 22731.85 
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Modelo 2 
(Departamento 

B) 

𝑉𝑜𝑙𝑢𝑚𝑒𝑛	𝑑𝑒	𝑐𝑜𝑛𝑠𝑢𝑚𝑜	𝑑𝑒	𝑔𝑎𝑠	𝑛𝑎𝑡𝑢𝑟𝑎𝑙	 =  
61958.11 + 	𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖ó𝑛 × 52.53 
+	𝑉𝑜𝑙𝑢𝑚𝑒𝑛	𝑑𝑒	𝑔𝑎𝑠	𝑐𝑜𝑞𝑢𝑒 × 0.075

− 		𝐸𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑖𝑎 × 2502424.96 
−𝐻𝑜𝑟𝑎𝑠	𝑑𝑒	𝑡𝑟𝑎𝑏𝑎𝑗𝑜	𝑝𝑟𝑜𝑚𝑒𝑑𝑖𝑜	𝑑𝑒	𝑙𝑎𝑠	𝑚á𝑞𝑢𝑖𝑛𝑎𝑠

× 112.71 
 

0.817 10.249 9451.62 

Modelo 3 
(Departamento 

D) 

𝑉𝑜𝑙𝑢𝑚𝑒𝑛	𝑑𝑒	𝑐𝑜𝑛𝑠𝑢𝑚𝑜	𝑑𝑒	𝑔𝑎𝑠	𝑛𝑎𝑡𝑢𝑟𝑎𝑙		
= 131107.881
+ 𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖ó𝑛 × 73.074
− 	𝑀𝑎𝑠𝑎	𝑑𝑒	𝑖𝑛𝑦𝑒𝑐𝑐𝑖ó𝑛	𝑑𝑒	𝑐𝑎𝑟𝑏ó𝑛	
× 7.772
− 𝐸𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑖𝑎 × 10131807.66
+ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑎	𝑎𝑚𝑏𝑖𝑒𝑛𝑡𝑒	
× 	1412.169 

 

0.944 7.346 26864.53 

Modelo 4 
(Departamento 

E) 

𝑉𝑜𝑙𝑢𝑚𝑒𝑛	𝑑𝑒	𝑐𝑜𝑛𝑠𝑢𝑚𝑜	𝑑𝑒	𝑔𝑎𝑠	𝑛𝑎𝑡𝑢𝑟𝑎𝑙	
= 289297.433
+ 𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖ó𝑛	 × 98.971 

−	Masa de inyección de carbón × 5.385 −
𝐸𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑖𝑎 × 27707698.14 

+𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑎	𝑎𝑚𝑏𝑖𝑒𝑛𝑡𝑒	 ×557.167 
 

0.977 2.892 13797.77 

Modelo 5 
(Departamento 

C) 

𝑉𝑜𝑙𝑢𝑚𝑒𝑛	𝑑𝑒	𝑐𝑜𝑛𝑠𝑢𝑚𝑜	𝑑𝑒	𝑔𝑎𝑠	𝑛𝑎𝑡𝑢𝑟𝑎𝑙	
= 215873.685
+ 𝑃𝑟𝑜𝑑𝑢𝑐𝑐𝑖ó𝑛	 × 0.246 

−𝐸𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑖𝑎 × 532949.574 +
𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑎	𝑎𝑚𝑏𝑖𝑒𝑛𝑡𝑒	 × 7.290 

0.997 0.141 661.111 

Nota: R2= Coeficiente de determinación al cuadrado, MAPE = Error porcentual absoluto medio y RMSE= Raíz del error 
cuadrático medio. 
 
 

Tabla 6. Medidas de error de pronóstico de los diferentes modelos propuestos. Fuente: Elaboración propia. 
 Modelo 1 Modelo 2 Modelo 3 Modelo 4 Modelo 5 
 RLM/MT RLM/MT RLM/MT RLM/MT RLM/MT 

RMSE 
35305.06 / 
134958.70 

10278.01 / 
34581.12 

48384.42 / 
111661.65 

27490.14 / 
104146.06 

187.19 / 
23928.90 

MAD 
28292.73 / 
101706.09 

9178.78 / 
30989.32 

40649.32 / 
90766.52 

21767.43 / 
79500.53 

156.90 / 
22892.10 

MAPE 
(%) 

9.44 / 
37.52 

15.68 / 
49.33 

17.02 / 
44.80 

8.90/ 
25.94 

0.09 / 
12.67 

Nota: Método de regresión lineal múltiple (RLM), método tradicional (MT), raíz del error medio al cuadrado (RMSE), 
desviación absoluta de la media (MAD), error porcentual absoluto medio (MAPE). 

 
 
En el análisis de los modelos propuestos de regresión lineal múltiple no se observó presencia de multicolinealidad 
entre las variables explicativas de los modelos 2, 3, 4 y 5, debido a que los valores obtenidos de la prueba del 
Factor de Inflación de la Varianza (VIF) no fueron superiores a 10, por lo tanto, se consideraron todas las variables 
regresoras definidas para cada modelo [35]. Sin embargo, en el modelo 1 se presentó multicolinealidad en dos de 
sus variables, por lo cual fueron descartadas del modelo. En la Tabla 7 se muestran los resultados del VIF de cada 
modelo.  
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Tabla 7. Prueba del Factor de Inflación de la Varianza para los modelos de regresión lineal múltiple.  
Modelo  Variables regresoras 

  Producción Eficiencia 
Volumen 
de gas 
coque 

Horas de 
trabajo 

promedio de 
las máquinas 

Masa de 
inyección 

de 
carbón 

Temperatura 
ambiente 

Modelo 1 
(Departamento A) 

VIF 

70.785 1.047 1.174 71.794 NA NA 

Modelo 2 
(Departamento B) 

1.495 5.590 6.681 1.056 NA NA 

Modelo 3 
(Departamento D) 

2.455 1.299 NA NA 2.513 1.140 

Modelo 4 
(Departamento E) 1.794 1.370 NA NA 1.919 1.234 

Modelo 5 
(Departamento C) 1.455 1.430 NA NA NA 1.102 

Nota: NA= No aplica. 
Fuente: Elaboración propia. 

 
 
4.1. Pronósticos usando el modelo de regresión lineal múltiple 
Con la aplicación de las técnicas de predicción de RLM para el departamento A, se puede observar en la Figura 6, 
que el método de RLM obtiene mejor resultado de pronóstico de volumen de consumo de gas natural con respecto 
al método tradicional, obteniendo un 9.44% de error porcentual absoluto medio (MAPE) con respecto al 37.52% 
obtenido por el método tradicional mostrado en la Tabla 6. Esto es respaldado por las medidas de exactitud 
calculadas para el Modelo 1, en el cual se determinó que las variables independientes explican la variabilidad del 
consumo de gas natural en un 74%, mientras que MAPE fue del 5.22%. Se confirma la importancia de la variable 
horas de trabajo promedio de las máquinas como uno de los factores más influyentes en el volumen de consumo 
de gas natural según el análisis de la suma de cuadrados tipo III. 
 

 
Figura 6. Comparación del método de RLM (Modelo 1) con respecto al método tradicional para el pronóstico del volumen 

de consumo de gas natural (m3). 
 

En la Figura 7 se muestran los resultados obtenidos para el departamento B, donde se determina que el método de 
RGLM (Modelo 2) sigue manteniendo una mejor predicción del consumo de gas natural con respecto al método 
tradicional; se obtuvo un mejor porcentaje de error (MAPE) de 15.68% con respecto al método tradicional que 
obtuvo un 49.33%. Pese a que la naturaleza del departamento es compleja debido a diversos factores no 
controlables (días de paros no programables, defecto en alguna de sus máquinas de trabajo y accidentes imprevistos 
en el área operativa) que suelen influir de manera directa sobre el consumo de gas natural, las medidas de exactitud 
del Modelo 2 reflejan que las variables independientes para este modelo explican en 82% la variabilidad de la 
variable dependiente de volumen de consumo de gas natural de forma confiable, aportando así, pronósticos más 
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asertivos que el método tradicional utilizado actualmente. Para este modelo, el grupo de datos que obtuvo mejor 
comportamiento de pronóstico fue el grupo uno. 
 

 
Figura 7. Comparación del método de RLM (Modelo 2) con respecto al método tradicional para el pronóstico del volumen 

de consumo de gas natural (m3). 
 
Los resultados obtenidos del método de RLM para el departamento D se muestran en la Figura 8, donde se observa 
que en este método fue incorporada la variable exógena de temperatura ambiente, la cual permitió mejorar de 
manera positiva las predicciones sobre el volumen de consumo de gas natural para el departamento. El error 
porcentual absoluto medio del Modelo 3 (basado en RLM) obtuvo un valor de 17.02%, mientras que el método 
tradicional un 44.80%, proporcionando así un modelo moderadamente factible para hacer pronóstico sobre la 
variable dependiente (volumen de consumo de gas natural). Al igual que en los modelos anteriores, las medidas 
de exactitud del modelo 3 respaldan tales resultados, donde se pudo determinar que las cuatro variables 
independientes (producción, masa de inyección de carbón, eficiencia y temperatura ambiente) explican en un 94 
% la variabilidad de la variable dependiente.  
 

 
Figura 8. Comparación del método de RLM (Modelo 3) con respecto al método tradicional para el pronóstico del volumen 

de consumo de gas natural (m3). 
 

Para el Modelo 4 del departamento E se asume que, este método proporciona una mejor predicción de la variable 
dependiente con respecto al método tradicional (Figura 9), donde el valor del error porcentual absoluto medio 
correspondió al 8.90% y 25.94% respectivamente. También se identificó que las variables independientes en su 
conjunto explican en un 98% la variabilidad del volumen de consumo de gas natural. Asimismo, se determinó que 
la variable eficiencia se relaciona e influye más con el consumo de gas natural en el departamento E. 
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Figura 9. Comparación del método de RLM (Modelo 4) con respecto al método tradicional para el pronóstico del volumen 

de consumo de gas natural (m3). 
 

A continuación, se muestran los resultados obtenidos del método de RLM (Modelo 5) del departamento C, 
dedicado a la actividad productiva de energía eléctrica dentro de la compañía. Para este modelo, se tuvieron como 
variables independientes: producción, eficiencia y temperatura ambiente; mientras que la variable dependiente 
fue el volumen de consumo de gas natural. Este modelo presentó los mejores resultados respecto a los modelos 
anteriores, obteniendo como resultados de MAPE de 0.09% con respecto al método tradicional con un 12.67%; 
mientras que el R2 para el Modelo 5 fue de 0.997, respaldando así la factibilidad para hacer proyecciones más 
asertivas que el método tradicional sobre consumo de gas natural (Figura 10). Entre las variables explicativas del 
Modelo 5 que más influyen sobre la variable dependiente se encuentra la variable de producción, siendo esta la de 
mayor correlación con respecto a las demás variables. 

 

 
Figura 10. Comparación del método de RLM (Modelo 5) con respecto al método tradicional para el pronóstico del volumen 

de consumo de gas natural (m3). 
 
 
5. Discusión de resultados   
A partir de los resultados y del análisis de las medidas de exactitud de cada uno de los modelos propuestos, se 
determinó que, mediante el uso de un modelo matemático de gestión de recursos de gas natural, se pueden hacer 
estimaciones más precisas y confiables que permitan mejorar la eficiencia de los recursos energéticos en la 
industria siderúrgica en México.  

Los resultados de las medidas de exactitud de los cinco modelos generados para la variable dependiente de 
volumen de consumo de gas natural con sus respectivas variables explicativas obtuvieron correlaciones fuertes 
(Modelo 1: 0.85, Modelo 2: 0.90, Modelo 3: 0.97, Modelo 4: 0.98, Modelo 5: 0.99). Por otra parte, los modelos 
que mostraron mejor comportamiento de pronóstico sobre la variable dependiente fueron los Modelos 1, 4 y 5 con 
un MAPE de 9.44%, 8.9% y 0.09% respectivamente. Con las variables identificadas para mejorar las estimaciones 
de consumo de gas natural en los modelos 3,4 y 5, se considera que la variable exógena es la temperatura ambiente, 
debido a que mediante tal variable los procesos siderúrgicos pueden regular y estimar mejor el pronóstico de 
consumo de gas natural dentro de la compañía.    

Con base en los resultados del análisis de la suma de cuadrados de tipo III, en los Modelos 2, 3 y 5 la variable 
que más influyó en el volumen de consumo de gas natural fue la variable independiente producción; mientras que 
para el Modelo 1 fue la variable de horas de trabajo promedio de las máquinas y para el Modelo 4 fue la variable 
eficiencia.  
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Los resultados anteriormente explicados fueron obtenidos del análisis del proceso en sitio y conforme a los 
datos proporcionados por los encargados de la parte operativa de la unidad de análisis, teniendo como limitación 
el factor de confidencialidad en los datos crudos del proceso de consumo de gas natural en cada uno de los procesos 
siderúrgicos.  
 
 
6. Conclusiones   
Se ha identificado que actualmente la industria siderúrgica carece de herramientas de gestión de recursos 
energéticos, provocando graves problemas en la optimización de consumo de gas natural en sus diversos procesos 
industriales. Sin embargo, este problema puede ser abordado mediante el uso de modelos predictivos basados en 
regresión lineal múltiple, los cuales, según las medidas de exactitud calculadas, proporcionan mejores pronósticos 
sobre el volumen de consumo de gas natural que los métodos convencionales actuales. 

Los resultados del error porcentual absoluto medio y el error cuadrático medio de los modelos de RLM 
(MAPE: 10.23%, RMSE: 20492.32, DAM: 20009.03) vs. método tradicional (MAPE: 34.05%, RMSE:93055.92, 
DAM: 65170.91), reflejan que los modelos propuestos mejoran la gestión de recursos de gas natural, debido a que 
proporcionan estimaciones más confiables y precisas del volumen de consumo de gas natural en los procesos 
siderúrgicos, de tal forma que se puedan realizar planificaciones adecuadas de la programación energética que 
conlleve a un incremento en su productividad, ahorros monetarios y eficiencia en el manejo de sus recursos 
energéticos de gas natural. 

Por otro lado, se encontró, que a medida que los departamentos utilizaban recursos secundarios como 
combustible en sus procesos, tales como: volumen de gas coque o masa de inyección de carbón, estos disminuían 
considerablemente el volumen de consumo de gas natural en los procesos siderúrgicos. 
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